找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Selected Works of Oded Schramm; Itai Benjamini,Olle H?ggstr?m Book 2011 Springer Science+Business Media, LLC 2011 graph limits.history of

[復制鏈接]
樓主: NERVE
51#
發(fā)表于 2025-3-30 08:33:35 | 只看該作者
52#
發(fā)表于 2025-3-30 12:26:30 | 只看該作者
gral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the It? o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, It? o introduced the stochastic integral and a formula, known since then as It? o’s formula. The It? o fo
53#
發(fā)表于 2025-3-30 17:24:51 | 只看該作者
Omer Angel,Oded Schrammgral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the It? o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, It? o introduced the stochastic integral and a formula, known since then as It? o’s formula. The It? o fo
54#
發(fā)表于 2025-3-30 21:01:15 | 只看該作者
Oded Schramm: From Circle Packing to SLEal Brownian frontier. But already his previous work bears witness to the brilliance of his mind, and many of his early papers contain both deep and beautifully simple ideas that deserve better knowing.
55#
發(fā)表于 2025-3-31 03:47:49 | 只看該作者
Noise Sensitivity of Boolean Functions and Applications to Percolationand ω‘ (.) = 1 ? ω (.) with probability ε. independently of the other edges. Let .(τ) be the probability for having a crossing in ω, conditioned on ω‘ = τ. Then for all . sufficiently large, .{τ : |.(τ) ? 1/2| > ε} < ε.
56#
發(fā)表于 2025-3-31 07:09:05 | 只看該作者
57#
發(fā)表于 2025-3-31 10:17:07 | 只看該作者
2197-5825 tion. An introduction by the Editors and a comprehensive bibliography of Schramm‘s publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects..978-1-4939-4042-4978-1-4419-9675-6Series ISSN 2197-5825 Series E-ISSN 2197-5833
58#
發(fā)表于 2025-3-31 17:21:29 | 只看該作者
Circle Patterns with the Combinatorics of the Square Grid?
59#
發(fā)表于 2025-3-31 20:50:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
同心县| 舞阳县| 浠水县| 延长县| 株洲县| 璧山县| 铜川市| 微博| 沈丘县| 湘潭市| 阿拉善左旗| 漾濞| 通渭县| 恩施市| 湟中县| 洛阳市| 方山县| 军事| 武穴市| 虹口区| 台安县| 琼结县| 定陶县| 建湖县| 井陉县| 隆回县| 中牟县| 登封市| 安乡县| 乐昌市| 建平县| 天镇县| 谷城县| 行唐县| 佛教| 彰化市| 通河县| 新兴县| 互助| 桐柏县| 色达县|