找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic V; First Challenge, SEG Antonio Pepe,Gia

[復制鏈接]
樓主: JOLT
21#
發(fā)表于 2025-3-25 04:25:48 | 只看該作者
,Automatic Aorta Segmentation with?Heavily Augmented, High-Resolution 3-D ResUNet: Contribution to?tbility of aortic dissection or the difficulty with segmenting and annotating the small branches. This work presents a contribution by the MedGIFT team to the . challenge organized during the MICCAI 2023 conference. We propose a fully automated algorithm based on deep encoder-decoder architecture. Th
22#
發(fā)表于 2025-3-25 09:11:48 | 只看該作者
23#
發(fā)表于 2025-3-25 15:44:38 | 只看該作者
,Misclassification Loss for?Segmentation of?the?Aortic Vessel Tree, we propose a Misclassification Loss (MC loss) function, which can effectively suppress false positives and rescue the false negatives. A differentiable eXclusive OR (XOR) operation is implemented to identify these false predictions, which are then minimized through a cross-entropy loss. The propose
24#
發(fā)表于 2025-3-25 19:15:01 | 只看該作者
,Deep Learning-Based Segmentation and?Mesh Reconstruction of?the?Aortic Vessel Tree from?CTA Images,rtic diseases. Identifying changes in the AVT structure requires high-quality reconstructions that can enable the accurate comparison of the AVT geometry between follow-up scans. However, manual delineation of the whole AVT is a very time-consuming and labor-intensive procedure that can stall the cl
25#
發(fā)表于 2025-3-25 20:51:11 | 只看該作者
,RASNet: U-Net-Based Robust Aortic Segmentation Network for?Multicenter Datasets,e deployed manually, which is time-consuming and requires an experienced radiologist/physician. Automatic segmentation methods developed in recent years have performed well on single-centered datasets. However, their performance degraded on multi-centered datasets due to the various specifications o
26#
發(fā)表于 2025-3-26 02:57:55 | 只看該作者
27#
發(fā)表于 2025-3-26 04:51:20 | 只看該作者
,A Mini Guide on?Mesh Generation of?Blood Vessels for?CFD Applications,hort guide on meshing the inlets and outlets is provided. Namely, the open-source tool . is used to generate unstructured triangle and quadrilateral meshes, given a polyline description of a two-dimensional inlet or outlet. On the other hand, generating a three-dimensional mesh from the input surfac
28#
發(fā)表于 2025-3-26 11:03:26 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:29 | 只看該作者
0302-9743 had to upload their?algorithms to Grand Challenge in the form of Docker containers. Three tasks?were created for SEG.A. 2023..978-3-031-53240-5978-3-031-53241-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
30#
發(fā)表于 2025-3-26 20:01:50 | 只看該作者
,M3F: Multi-Field-of-View Feature Fusion Network for?Aortic Vessel Tree Segmentation in?CT Angiograp ATB) achieves the 1st place on the second phase of the 2023 MICCAI Seg.A challenge leaderboard. Such remarkable performance highlights M3F’s potential for both clinical applications and further research in aortic vessel segmentation.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 11:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平原县| 阿巴嘎旗| 威信县| 兰州市| 兴文县| 汉阴县| 新疆| 苗栗市| 青州市| 榕江县| 乌什县| 师宗县| 昌邑市| 油尖旺区| 略阳县| 蓬莱市| 东阳市| 黄平县| 开化县| 孝昌县| 平乡县| 峨眉山市| 梅河口市| 怀来县| 大新县| 民和| 闸北区| 延川县| 宜章县| 合作市| 勃利县| 南岸区| 万源市| 呼伦贝尔市| 巴里| 海伦市| 盘山县| 德州市| 堆龙德庆县| 灌阳县| 昌黎县|