找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwinger‘s Quantum Action Principle; From Dirac’s Formula Kimball A. Milton Book 2015 The Author(s) 2015 Julian Schwinger.Principle of Lea

[復(fù)制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-27 00:24:36 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:00 | 只看該作者
Time-Cycle or Schwinger-Keldysh Formulation,1964), and, rather mysteriously, cites the Martin-Schwinger equilibrium paper (Martin 1959), but not the nonequilibrium one (Schwinger 1961). The following was extracted from notes from Schwinger’s lectures given in 1968 at Harvard, as taken by the author.
33#
發(fā)表于 2025-3-27 06:59:21 | 只看該作者
34#
發(fā)表于 2025-3-27 11:45:18 | 只看該作者
Historical Introduction,Euler (1744) the “principle of least action” was given modern form by de Maupertuis (1744, 1746). We will not attempt to trace the history here; a brief useful account is given in Sommerfeld’s lectures (Sommerfeld 1964). The most important names in the history of the development of dynamical systems
35#
發(fā)表于 2025-3-27 14:04:13 | 只看該作者
Time-Cycle or Schwinger-Keldysh Formulation, nonequilibrium systems. Schwinger’s original work on this was his famous paper (Schwinger 1961); Keldysh’s paper appeared three years later (Keldysh 1964), and, rather mysteriously, cites the Martin-Schwinger equilibrium paper (Martin 1959), but not the nonequilibrium one (Schwinger 1961). The foll
36#
發(fā)表于 2025-3-27 19:08:27 | 只看該作者
37#
發(fā)表于 2025-3-28 01:12:24 | 只看該作者
38#
發(fā)表于 2025-3-28 02:32:03 | 只看該作者
2191-5423 ’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle
39#
發(fā)表于 2025-3-28 06:35:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马鞍山市| 铁力市| 共和县| 聂荣县| 葫芦岛市| 徐州市| 嘉禾县| 蒲江县| 安丘市| 阿巴嘎旗| 东乡族自治县| 鸡东县| 丁青县| 龙游县| 威远县| 秦皇岛市| 余庆县| 萝北县| 晴隆县| 诸暨市| 会宁县| 红安县| 平凉市| 土默特左旗| 宁蒗| 齐河县| 玉林市| 平定县| 尉氏县| 盐源县| 出国| 甘泉县| 疏附县| 社会| 栖霞市| 汨罗市| 青川县| 德阳市| 元谋县| 江口县| 蒲江县|