找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
31#
發(fā)表于 2025-3-26 23:42:49 | 只看該作者
978-3-7643-9999-3Birkh?user Basel 2009
32#
發(fā)表于 2025-3-27 02:42:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:10 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:05 | 只看該作者
Basic Schwarz-Pick type inequalities,Let Ω ? . and п ? . be two domains equipped by the Poincaré metric. We are concerned with the set . of functions locally holomorphic or meromorphic in Ω and, in general, multivalued. Let λ. (.), . ∈ Ω, and λп (.), . ∈ п, denote the density of the Poincaré metric at . ∈ Ω and . ∈ п, respectively.
35#
發(fā)表于 2025-3-27 14:26:40 | 只看該作者
Multiply connected domains,In the preceding chapters we considered punishing factors for simply connected domains, except the case C.(Ω,п). Namely, in Section 4.6 it was proved that for all hyperbolic domains Ω ? . and п ? .
36#
發(fā)表于 2025-3-27 21:25:55 | 只看該作者
Related results,First, we will give an outline of the ideas and results that led to the conjectures of Chua. To our knowledge, E. Landau was the first who considered the possibility to follow G. Pick’s program as indicated in the introduction for the higher derivatives of schlicht functions. He proved the following theorem (compare Landau [98], Gong [71]).
37#
發(fā)表于 2025-3-27 23:52:26 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:15 | 只看該作者
Michelle J. Bellino,James H. WilliamsThe collection brings together diverse contemporary and historical cases of curricula, educational practice, and policy as implemented in conflict-affected and post-conflict contexts; these empirical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定兴县| 越西县| 墨江| 灵璧县| 合川市| 岳西县| 耿马| 卢龙县| 崇礼县| 静安区| 吴桥县| 柯坪县| 东明县| 南汇区| 湘阴县| 肃北| 甘南县| 瑞丽市| 青冈县| 云浮市| 廊坊市| 长宁区| 河南省| 昌都县| 金坛市| 绩溪县| 合水县| 东辽县| 长武县| 安平县| 绥宁县| 太保市| 上饶县| 临朐县| 东平县| 庆阳市| 准格尔旗| 天长市| 凤阳县| 阿城市| 沾益县|