找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Scale Space and Variational Methods in Computer Vision; 4th International Co Arjan Kuijper,Kristian Bredies,Horst Bischof Conference procee

[復制鏈接]
樓主: choleric
31#
發(fā)表于 2025-3-27 00:06:28 | 只看該作者
Targeted Iterative Filtering require entirely different behavior of the applied denoising method. In this paper we propose a novel, nonlinear diffusion scheme that is derived from a linear diffusion process in a value space determined by the application. We show that application-driven linear diffusion in the transformed space
32#
發(fā)表于 2025-3-27 04:26:07 | 只看該作者
Generalized Gradient on Vector Bundle – Application to Image Denoisingrmined by three geometric data: a Riemannian metric on the base manifold, a Riemannian metric and a covariant derivative on the vector bundle. Under the assumption that the covariant derivative is compatible with the metric of the vector bundle, we consider the problems of minimizing the L2 and L1 n
33#
發(fā)表于 2025-3-27 05:52:00 | 只看該作者
34#
發(fā)表于 2025-3-27 11:39:17 | 只看該作者
35#
發(fā)表于 2025-3-27 16:54:48 | 只看該作者
36#
發(fā)表于 2025-3-27 20:22:59 | 只看該作者
37#
發(fā)表于 2025-3-28 00:38:11 | 只看該作者
Variational Methods for Motion Deblurring with Still Backgroundwe propose a model for the formation of this kind of partly blurred images which involve four unknown quantities: The object, the background, the blur kernel and a mask that encodes the shape of the object. Then we propose variational methods to solve the deblurring problem. We show that the method
38#
發(fā)表于 2025-3-28 03:58:05 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:15 | 只看該作者
A Cascadic Alternating Krylov Subspace Image Restoration Methodng is carried out with a wavelet transform, which also provides an estimate of the noise-level. The latter is used to determine a suitable regularization parameter for the Krylov subspace iterative deblurring method. The cascadic multilevel method proceed from coarse to fine image resolution, using
40#
發(fā)表于 2025-3-28 13:33:19 | 只看該作者
B-SMART: Bregman-Based First-Order Algorithms for Non-negative Compressed Sensing Problemsve scheme employing non-quadratic proximal terms. This scheme yields closed-form multiplicative updates and handles constraints implicitly. Its analysis does not rely on global Lipschitz continuity in contrast to established state-of-the-art gradient-based methods, hence it is attractive for dealing
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 21:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋州市| 垫江县| 平远县| 万源市| 吉水县| 泰宁县| 龙南县| 海晏县| 哈巴河县| 灵山县| 郑州市| 尼玛县| 泉州市| 钟祥市| 班玛县| 永吉县| 开封县| 浏阳市| 新宾| 宾川县| 平陆县| 南丰县| 三穗县| 崇明县| 华坪县| 容城县| 邮箱| 阿拉善左旗| 平潭县| 慈溪市| 万载县| 英山县| 醴陵市| 孝昌县| 滨海县| 涡阳县| 和龙市| 天长市| 承德县| 太仆寺旗| 福鼎市|