找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Scalarization and Separation by Translation Invariant Functions; with Applications in Christiane Tammer,Petra Weidner Book 2020 Springer Na

[復制鏈接]
樓主: clannish
51#
發(fā)表于 2025-3-30 08:46:02 | 只看該作者
Special Cases and Functionals Related to ,nequalities. We characterize efficient elements by means of functionals where oblique norms are involved and weakly efficient elements via scalarization using block norms. Our results are applied to multiobjective d.c. (difference of convex functions) optimization problems. Furthermore, we discuss s
52#
發(fā)表于 2025-3-30 12:50:17 | 只看該作者
53#
發(fā)表于 2025-3-30 19:58:53 | 只看該作者
Vector Optimization with Variable Domination Structures,ms where the domination structure is given by a set-valued map acting between abstract or finite-dimensional spaces. Interesting and important applications of vector optimization with variable domination structure arise in economics, psychology, capability of human behavior, in portfolio management,
54#
發(fā)表于 2025-3-30 23:19:49 | 只看該作者
Variational Methods in Topological Vector Spaces,ry optimality conditions in vector optimization, duality assertions, minimal point theorems and variational principles, necessary conditions for approximate solutions of vector optimization problems with respect to variable domination structure, existence results for solutions of vector variational
55#
發(fā)表于 2025-3-31 04:24:15 | 只看該作者
56#
發(fā)表于 2025-3-31 08:06:52 | 只看該作者
57#
發(fā)表于 2025-3-31 10:29:02 | 只看該作者
58#
發(fā)表于 2025-3-31 16:11:18 | 只看該作者
59#
發(fā)表于 2025-3-31 21:24:14 | 只看該作者
60#
發(fā)表于 2025-4-1 00:23:11 | 只看該作者
Sets and Binary Relations,ow to deduce results in cases where usually one of the following conditions has to be fulfilled, but is not satisfied or too restrictive:.- the space is equipped with a topology,.- a set is closed or has a nonempty interior in a given topology,.- a set is algebraically closed or its algebraic interior is nonempty.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 02:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贡觉县| 静海县| 沂水县| 静安区| 泰来县| 上饶市| 平山县| 古丈县| 冀州市| 阿拉善右旗| 南华县| 平度市| 广德县| 喀什市| 福海县| 镇雄县| 平和县| 馆陶县| 柞水县| 乌审旗| 房山区| 上饶县| 溆浦县| 湖南省| 北辰区| 荆门市| 舞钢市| 新蔡县| 夏河县| 麦盖提县| 高清| 建昌县| 张家港市| 苍溪县| 防城港市| 嵊州市| 定陶县| 双牌县| 长丰县| 青岛市| 德兴市|