找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sample Efficient Multiagent Learning in the Presence of Markovian Agents; Doran Chakraborty Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 11:21:40 | 只看該作者
hat sich im Laufe der Jahre verschoben. Zugespitzt gesagt: Trotz divergierender Auffassungen in einzelnen Punkten schien in den frühen Jahren der Frauenbewegung das Subjekt der Bewegung klar (?Wir Frauen“) und in der Solidarit?ts-Diskussion ging es schwerpunktm??ig um die eher praktische Frage der
12#
發(fā)表于 2025-3-23 16:40:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:11:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:04:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:35 | 只看該作者
Maximizing Social Welfare in the Presence of Markovian Agents,ves close to the best response with a high probability against a set of memory-bounded agents whose memory size is upper-bounded by a known value, and achieves close to the security value against any other set of agents which cannot be represented as being .. memory-bounded. . is the first MAL algor
16#
發(fā)表于 2025-3-24 07:00:19 | 只看該作者
Targeted Modeling of Markovian Agents,y close to the SW maximizing joint return by exploiting the Markovian agents maximally, in efficient sample complexity. We assume that . has some prior knowledge of the possible set of features . upon which the Markovian agents may base their policies, but not the exact set.
17#
發(fā)表于 2025-3-24 11:32:25 | 只看該作者
Structure Learning in Factored MDPs,ent. Both of these subroutines assume prior knowledge of the possible set of features upon which a Markovian agent may base its policy, but not the exact set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space a
18#
發(fā)表于 2025-3-24 18:00:56 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:55 | 只看該作者
Conclusion and Future Work,uman supervision. Two important capabilities in service of this goal are learning and interaction. Learning is necessary because agent developers cannot be expected to predict the characteristics of all possible environments that the agent might come across in the future. Rather, when situated in a
20#
發(fā)表于 2025-3-25 00:28:06 | 只看該作者
Structure Learning in Factored MDPs,act set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space and transition function of an induced MDP (induced by the Markovian agent’s policy).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安远县| 遂昌县| 万荣县| 江门市| 平武县| 菏泽市| 景宁| 岳普湖县| 安图县| 丹阳市| 安义县| 建始县| 平和县| 土默特右旗| 都江堰市| 古蔺县| 东辽县| 行唐县| 寿阳县| 郸城县| 深泽县| 琼结县| 泰安市| 林州市| 浪卡子县| 鹰潭市| 晋宁县| 象州县| 峨边| 全椒县| 阳西县| 隆昌县| 吴堡县| 衢州市| 长沙市| 南靖县| 乌鲁木齐县| 内黄县| 遵化市| 石屏县| 古田县|