找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sample Efficient Multiagent Learning in the Presence of Markovian Agents; Doran Chakraborty Book 2014 Springer International Publishing Sw

[復制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 11:21:40 | 只看該作者
hat sich im Laufe der Jahre verschoben. Zugespitzt gesagt: Trotz divergierender Auffassungen in einzelnen Punkten schien in den frühen Jahren der Frauenbewegung das Subjekt der Bewegung klar (?Wir Frauen“) und in der Solidarit?ts-Diskussion ging es schwerpunktm??ig um die eher praktische Frage der
12#
發(fā)表于 2025-3-23 16:40:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:11:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:04:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:35 | 只看該作者
Maximizing Social Welfare in the Presence of Markovian Agents,ves close to the best response with a high probability against a set of memory-bounded agents whose memory size is upper-bounded by a known value, and achieves close to the security value against any other set of agents which cannot be represented as being .. memory-bounded. . is the first MAL algor
16#
發(fā)表于 2025-3-24 07:00:19 | 只看該作者
Targeted Modeling of Markovian Agents,y close to the SW maximizing joint return by exploiting the Markovian agents maximally, in efficient sample complexity. We assume that . has some prior knowledge of the possible set of features . upon which the Markovian agents may base their policies, but not the exact set.
17#
發(fā)表于 2025-3-24 11:32:25 | 只看該作者
Structure Learning in Factored MDPs,ent. Both of these subroutines assume prior knowledge of the possible set of features upon which a Markovian agent may base its policy, but not the exact set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space a
18#
發(fā)表于 2025-3-24 18:00:56 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:55 | 只看該作者
Conclusion and Future Work,uman supervision. Two important capabilities in service of this goal are learning and interaction. Learning is necessary because agent developers cannot be expected to predict the characteristics of all possible environments that the agent might come across in the future. Rather, when situated in a
20#
發(fā)表于 2025-3-25 00:28:06 | 只看該作者
Structure Learning in Factored MDPs,act set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space and transition function of an induced MDP (induced by the Markovian agent’s policy).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新化县| 河南省| 彭州市| 镇沅| 临城县| 东台市| 安岳县| 通许县| 温州市| 黔西| 台湾省| 正阳县| 鄂托克前旗| 玉屏| 垫江县| 泉州市| 礼泉县| 徐汇区| 江达县| 黑山县| 盐源县| 青冈县| 汶川县| 西充县| 同心县| 宿松县| 大姚县| 武强县| 南安市| 当涂县| 南雄市| 刚察县| 秦皇岛市| 桃园市| 绥棱县| 舟山市| 西平县| 改则县| 呼图壁县| 南京市| 卢湾区|