找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: SWAT ‘88; 1st Scandinavian Wor Rolf Karlsson,Andrzej Lingas Conference proceedings 1988 Springer-Verlag Berlin Heidelberg 1988 Algorithms.R

[復制鏈接]
樓主: Tyler
11#
發(fā)表于 2025-3-23 11:12:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:08:09 | 只看該作者
An implicit binomial queue with constant insertion time,action in logarithmic time. In developing this structure we first introduce a very simple scheme permitting insertions in constant amortized time. This is modified to achieve the worst-case behavior using roughly lg*. pairs of pointers, and finally this pointer requirement is removed.
13#
發(fā)表于 2025-3-23 18:02:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:59:50 | 只看該作者
16#
發(fā)表于 2025-3-24 08:51:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:00:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:04:15 | 只看該作者
Intersecting line segments, ray shooting, and other applications of geometric partitioning techniqu results are obtained by enhancing and extending these techniques, and include: (i) An .(..+.)-time (for any δ>0), .(.)-space randomized algorithm for finding all . intersections of . line segments in the plane (we can count the number of these intersections in .(..) time and linear space). (ii) Pre
19#
發(fā)表于 2025-3-24 21:14:34 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:23 | 只看該作者
A lower bound and two approximative algorithms for the K-partitioning of rectilinear polygons,ch, where . is given and .<.. First we prove a lower bound .(.) for the number of components in the .-partition of a given .-gon .. Then two heuristic algorithms for the .-partitioning problem are presented. Their time complexities are O(. log..) or O(..log .), depending on the properties of the giv
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-28 11:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天台县| 荔浦县| 玛曲县| 张家界市| 玉溪市| 蓬莱市| 顺义区| 牡丹江市| 济源市| 多伦县| 惠州市| 蛟河市| 兴和县| 阿合奇县| 麻阳| 渝北区| 大埔县| 阿瓦提县| 南丹县| 北川| 四会市| 昭觉县| 涞源县| 通许县| 广河县| 孟州市| 隆昌县| 盖州市| 昌邑市| 洛南县| 新竹市| 文成县| 丹寨县| 榆社县| 翁源县| 楚雄市| 屯门区| 华阴市| 张家川| 东港市| 天津市|