找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: STACS 2007; 24th Annual Symposiu Wolfgang Thomas,Pascal Weil Conference proceedings 2007 Springer-Verlag Berlin Heidelberg 2007 Automat.alg

[復(fù)制鏈接]
樓主: Pierce
31#
發(fā)表于 2025-3-26 20:59:52 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:38 | 只看該作者
Pure Stationary Optimal Strategies in Markov Decision Processesyoff functions, and we prove that any MDP equipped with such a payoff function admits pure stationary optimal strategies..This result unifies and simplifies several existing proofs. Moreover, it is a key tool for generating new examples of MDPs with pure stationary optimal strategies.
33#
發(fā)表于 2025-3-27 07:00:39 | 只看該作者
34#
發(fā)表于 2025-3-27 11:58:15 | 只看該作者
35#
發(fā)表于 2025-3-27 15:06:39 | 只看該作者
Speed-Up Techniques for Shortest-Path Computationse for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can be used to prune or guide the search. Timetable information in public transport is a traditional application domain for such techniques. In this paper, we provide a conde
36#
發(fā)表于 2025-3-27 18:30:27 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:46 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:09 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:15 | 只看該作者
40#
發(fā)表于 2025-3-28 14:29:34 | 只看該作者
On the Size of the Universal Automaton of a Regular Languageired by the factor matrix defined by Conway thirty years ago. We prove in this paper that a tight bound on its size with respect to the size of the smallest equivalent NFA is given by Dedekind’s numbers. At the end of the paper, we deal with the unary case. Chrobak has proved that the size of the mi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 三门县| 西昌市| 苗栗县| 安阳市| 青铜峡市| 祁阳县| 家居| 博野县| 渑池县| 昌宁县| 文登市| 临安市| 塔河县| 天全县| 昔阳县| 剑阁县| 承德县| 新乡市| 平潭县| 五常市| 岳阳市| 左贡县| 广宗县| 遂平县| 涟源市| 清流县| 嵩明县| 浦北县| 舞阳县| 太湖县| 松滋市| 林甸县| 湘潭县| 栖霞市| 营口市| 长垣县| 隆回县| 龙里县| 云林县| 卓尼县|