找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: STACS 2007; 24th Annual Symposiu Wolfgang Thomas,Pascal Weil Conference proceedings 2007 Springer-Verlag Berlin Heidelberg 2007 Automat.alg

[復(fù)制鏈接]
樓主: Pierce
31#
發(fā)表于 2025-3-26 20:59:52 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:38 | 只看該作者
Pure Stationary Optimal Strategies in Markov Decision Processesyoff functions, and we prove that any MDP equipped with such a payoff function admits pure stationary optimal strategies..This result unifies and simplifies several existing proofs. Moreover, it is a key tool for generating new examples of MDPs with pure stationary optimal strategies.
33#
發(fā)表于 2025-3-27 07:00:39 | 只看該作者
34#
發(fā)表于 2025-3-27 11:58:15 | 只看該作者
35#
發(fā)表于 2025-3-27 15:06:39 | 只看該作者
Speed-Up Techniques for Shortest-Path Computationse for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can be used to prune or guide the search. Timetable information in public transport is a traditional application domain for such techniques. In this paper, we provide a conde
36#
發(fā)表于 2025-3-27 18:30:27 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:46 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:09 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:15 | 只看該作者
40#
發(fā)表于 2025-3-28 14:29:34 | 只看該作者
On the Size of the Universal Automaton of a Regular Languageired by the factor matrix defined by Conway thirty years ago. We prove in this paper that a tight bound on its size with respect to the size of the smallest equivalent NFA is given by Dedekind’s numbers. At the end of the paper, we deal with the unary case. Chrobak has proved that the size of the mi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荃湾区| 海盐县| 德州市| 孟津县| 镇平县| 鹰潭市| 松潘县| 宁河县| 鲜城| 南康市| 通州区| 云南省| 措勤县| 宁波市| 昭平县| 牙克石市| 大埔县| 尼木县| 固始县| 平度市| 珠海市| 蒲江县| 抚宁县| 扎赉特旗| 泉州市| 开江县| 班玛县| 曲阳县| 阿拉善右旗| 成都市| 天峨县| 兴山县| 吴旗县| 道孚县| 东莞市| 龙游县| 山东省| 周宁县| 连云港市| 巴楚县| 鹤庆县|