找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets and Knowledge Technology; 7th International Co Tianrui Li,Hung Son Nguyen,Hong Yu Conference proceedings 2012 Springer-Verlag Be

[復(fù)制鏈接]
查看: 34941|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:41:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rough Sets and Knowledge Technology
副標(biāo)題7th International Co
編輯Tianrui Li,Hung Son Nguyen,Hong Yu
視頻videohttp://file.papertrans.cn/832/831922/831922.mp4
概述Up-to-date results.Fast track conference proceedings.State-of-the-art report
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Rough Sets and Knowledge Technology; 7th International Co Tianrui Li,Hung Son Nguyen,Hong Yu Conference proceedings 2012 Springer-Verlag Be
描述This book constitutes the refereed proceedings of the 7th International Conference on Rough Sets and Knowledge Technology, RSKT 2012, held in Chengdu, China during August 2012, as one of the co-located conferences of the 2012 Joint Rough Set Symposium, JRS 2012. The 63 revised papers (including 42 regular and 21 short papers) were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on rough sets and its generalizations, rough sets in data and knowledge processing, knowledge technology, advances in granular computing (AGC 2012 workshop), decision-theoretic rough set model and applications (special session), intelligent decision making and granular computing (special session), rough set foundations (special session).
出版日期Conference proceedings 2012
關(guān)鍵詞algorithms; data mining; decision trees; knowledge discovery; machine learning
版次1
doihttps://doi.org/10.1007/978-3-642-31900-6
isbn_softcover978-3-642-31899-3
isbn_ebook978-3-642-31900-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Rough Sets and Knowledge Technology影響因子(影響力)




書目名稱Rough Sets and Knowledge Technology影響因子(影響力)學(xué)科排名




書目名稱Rough Sets and Knowledge Technology網(wǎng)絡(luò)公開度




書目名稱Rough Sets and Knowledge Technology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rough Sets and Knowledge Technology被引頻次




書目名稱Rough Sets and Knowledge Technology被引頻次學(xué)科排名




書目名稱Rough Sets and Knowledge Technology年度引用




書目名稱Rough Sets and Knowledge Technology年度引用學(xué)科排名




書目名稱Rough Sets and Knowledge Technology讀者反饋




書目名稱Rough Sets and Knowledge Technology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:40:21 | 只看該作者
A New Intuitionistic Fuzzy Rough Set Approach for Decision Supportcalled believable rules, for better performance in decision-making. We provide an example to demonstrate the effectiveness of the proposed approach in multicriteria sorting and also a comparison with existing representative DRSA models.
板凳
發(fā)表于 2025-3-22 01:01:21 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:52 | 只看該作者
5#
發(fā)表于 2025-3-22 09:36:41 | 只看該作者
Evidential Clustering or Rough Clustering: The Choice Is Yourslar K-means algorithm namely Rough k-means (RKM) is proposed and experimented with various datasets..In this paper we analyzed both the algorithms using synthetic, real and standard datasets to determine similarities of these two clustering approaches and focused on the strengths of each approach.
6#
發(fā)表于 2025-3-22 15:57:47 | 只看該作者
7#
發(fā)表于 2025-3-22 19:14:51 | 只看該作者
A Fuzzy-Rough Sets Based Compact Rule Induction Method for Classifying Hybrid Datae-art methods for hybrid data learning. Comparative studies indicate that rule sets extracted by this method can not only achieve comparable accuracy, but also get more compact rule sets. It is therefore concluded that the proposed method is effective for hybrid data learning.
8#
發(fā)表于 2025-3-22 22:33:37 | 只看該作者
Conference proceedings 2012 China during August 2012, as one of the co-located conferences of the 2012 Joint Rough Set Symposium, JRS 2012. The 63 revised papers (including 42 regular and 21 short papers) were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on rough sets
9#
發(fā)表于 2025-3-23 03:59:31 | 只看該作者
10#
發(fā)表于 2025-3-23 07:40:50 | 只看該作者
Data-Driven Valued Tolerance Relationl calculation method of tolerance degree needs to know the probability distribution of an information system in advance, and it is also difficult to select a suitable threshold. In this paper, a data-driven valued tolerance relation is proposed based on the idea of data-driven data mining. The new c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临武县| 淮滨县| 长顺县| 定兴县| 新安县| 丹阳市| 牡丹江市| 沁水县| 南充市| 大兴区| 罗平县| 华安县| 汉中市| 额济纳旗| 尼玛县| 牡丹江市| 越西县| 阜平县| 奉化市| 阳山县| 正宁县| 磴口县| 乌兰浩特市| 垦利县| 尼玛县| 文水县| 长沙市| 乐亭县| 阿城市| 伊吾县| 海阳市| 辉县市| 奉节县| 拉萨市| 克拉玛依市| 喀喇沁旗| 仙游县| 唐河县| 咸宁市| 濮阳县| 连云港市|