找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets and Knowledge Technology; 9th International Co Duoqian Miao,Witold Pedrycz,Ruizhi Wang Conference proceedings 2014 Springer Inte

[復(fù)制鏈接]
樓主: 胃口
31#
發(fā)表于 2025-3-26 23:34:10 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:17:21 | 只看該作者
An Explicit Sparse Mapping for Nonlinear Dimensionality Reduction-dimensional representation space. Previously, some methods have been proposed to provide explicit mappings for nonlinear dimensionality reduction methods. Nevertheless, a disadvantage of these methods is that the learned mapping functions are combinations of all the original features, thus it is of
34#
發(fā)表于 2025-3-27 13:04:17 | 只看該作者
A Web-Based Learning Support System for Rough Sets environments. The learning subjects of Web-based learning systems are mostly for popular sciences. Little attention has been paid for learning cutting edge subjects and no such systems have been developed for rough sets. This paper presents the design principle, system architectures, and prototype
35#
發(fā)表于 2025-3-27 16:03:41 | 只看該作者
0302-9743 in granular computing, big data to wise decisions, rough set theory, and three-way decisions, uncertainty, and granular computing.978-3-319-11739-3978-3-319-11740-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 19:32:24 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:35 | 只看該作者
Approximate Reduction for the Interval-Valued Decision Table0MW unit in some power plant. Experimental results show that the algorithm proposed in this article can maintain a high classification accuracy with the proper parameters, and the numbers of objects and attributes can both be greatly reduced.
38#
發(fā)表于 2025-3-28 04:57:29 | 只看該作者
39#
發(fā)表于 2025-3-28 06:50:47 | 只看該作者
An Explicit Sparse Mapping for Nonlinear Dimensionality Reductionreduction. By using this framework and the method of locally linear embedding, we derive an explicit sparse nonlinear dimensionality reduction algorithm, which is named sparse neighborhood preserving polynomial embedding. Experimental results on real world classification and clustering problems demonstrate the effectiveness of our approach.
40#
發(fā)表于 2025-3-28 13:02:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
休宁县| 咸丰县| 峨眉山市| 桃园市| 兰坪| 城步| 怀柔区| 萝北县| 丽江市| 米脂县| 黔东| 土默特左旗| 通城县| 台北市| 兴安县| 蚌埠市| 阿拉善左旗| 新巴尔虎左旗| 自治县| 酒泉市| 舞阳县| 襄垣县| 宣武区| 京山县| 兰坪| 三明市| 旬阳县| 正镶白旗| 清苑县| 延津县| 塘沽区| 鲁山县| 吉首市| 湾仔区| 将乐县| 新兴县| 福安市| 文昌市| 阿荣旗| 虎林市| 宜州市|