找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rotation Transforms for Computer Graphics; John Vince Textbook 2011 Springer-Verlag London Limited 2011 Computer graphics/ games.Geometric

[復制鏈接]
樓主: 遮蔽
21#
發(fā)表于 2025-3-25 05:03:59 | 只看該作者
Bivector Rotors,axes. The three reflections theorem is used to show how geometric algebra creates similar triple constructs to quaternions. It then develops 2D and 3D rotors and shows using practical examples how they work. After showing how to extract a rotor from a bivector triple, the chapter concludes with a su
22#
發(fā)表于 2025-3-25 08:36:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:29 | 只看該作者
Matrices,tisymmetric matrices, the characteristic equation, eigenvectors and eigenvalues. The latter are eventually used to extract the axis of rotation from a rotation matrix and the angle of rotation. The chapter concludes with a summary and a list of the matrix operations covered.
24#
發(fā)表于 2025-3-25 19:43:31 | 只看該作者
Textbook 2011al environment. Although the former is a trivial operation, the latter can be a challenging task.?.Rotation Transforms for Computer Graphics. covers a wide range of mathematical techniques used for rotating points and frames of reference in the plane and 3D space. It includes many worked examples an
25#
發(fā)表于 2025-3-25 20:44:24 | 只看該作者
26#
發(fā)表于 2025-3-26 01:03:33 | 只看該作者
http://image.papertrans.cn/r/image/831836.jpg
27#
發(fā)表于 2025-3-26 04:58:59 | 只看該作者
https://doi.org/10.1007/978-0-85729-154-7Computer graphics/ games; Geometric algebra; Matrices; Quaternions; Rotations
28#
發(fā)表于 2025-3-26 11:10:32 | 只看該作者
978-0-85729-153-0Springer-Verlag London Limited 2011
29#
發(fā)表于 2025-3-26 16:37:14 | 只看該作者
Conclusion,This last chapter reviews the book’s objectives.
30#
發(fā)表于 2025-3-26 20:39:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
交口县| 万安县| 东辽县| 东城区| 股票| 长治市| 永嘉县| 樟树市| 双江| 金阳县| 靖边县| 明星| 增城市| 上蔡县| 西盟| 金乡县| 商南县| 新乡县| 皮山县| 安图县| 安宁市| 汾西县| 新建县| 泰宁县| 尼勒克县| 新余市| 息烽县| 中宁县| 普兰店市| 县级市| 咸阳市| 阿勒泰市| 伊金霍洛旗| 虹口区| 和平县| 广州市| 惠州市| 天柱县| 汉阴县| 疏勒县| 汉沽区|