找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Romanticism in Science; Science in Europe, 1 Stefano Poggi,Maurizio Bossi Book 1994 Springer Science+Business Media Dordrecht 1994 19th cen

[復(fù)制鏈接]
樓主: Traction
31#
發(fā)表于 2025-3-27 00:19:04 | 只看該作者
,Geometry and “Metaphysics of Space” in Gauss and Riemann,en as an axiom and formulated in the following terms: “That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles”. (Heath 1956, p. 20)
32#
發(fā)表于 2025-3-27 04:16:49 | 只看該作者
0068-0346 of knowledge was decidedly unitary, but, in the period between1790 and 1840, the special emphasis it placed on observation andresearch led to an unprecedented accumulation of data, accompanied bya rapid growth in scientific specialization. An example of thetensions created by this development is to
33#
發(fā)表于 2025-3-27 05:42:33 | 只看該作者
Stefano Poggisics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
34#
發(fā)表于 2025-3-27 10:32:35 | 只看該作者
William R. Woodward,Reinhardt Pestersics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 16:31:15 | 只看該作者
H. A. M. SneldersExamples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:44:07 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:16 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:16 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:45 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
40#
發(fā)表于 2025-3-28 10:59:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 13:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同心县| 科技| 名山县| 宿州市| 白朗县| 灌云县| 乐亭县| 潮州市| 新干县| 松潘县| 老河口市| 绥宁县| 和平县| 翁源县| 独山县| 新巴尔虎左旗| 五家渠市| 盱眙县| 松江区| 高雄县| 旌德县| 惠来县| 丰台区| 浮山县| 申扎县| 临海市| 安溪县| 上林县| 平阴县| 屯门区| 柏乡县| 赞皇县| 临漳县| 仲巴县| 高要市| 陆良县| 贵南县| 公安县| 镇康县| 且末县| 寿光市|