找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robustness in Identification and Control; A. Garulli (Assistant Professor),A. Tesi (Assistan Conference proceedings 1999 Springer-Verlag L

[復(fù)制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 13:43:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:31 | 只看該作者
Comments on model validation as set membership identification,gested in the “Identification-for-robust-control” context and two more classical statistical tests. By defining the set of models that would pass the chosen model validation test, we may interpret each of these as a set membership identification method. The consequences of such a viewpoint are discu
13#
發(fā)表于 2025-3-23 20:22:34 | 只看該作者
SM identification of model sets for robust control design from data,d and the effects of unmodeled dynamics have to be accounted for. The paper presents a unified view of the Set Membership Identification Theory (SMIT), as recently evolved by the authors and coworkers, aiming to deliver not a single model of the system to be identified, but a set of models, indicate
14#
發(fā)表于 2025-3-24 01:22:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:44:10 | 只看該作者
Semi-parametric methods for system identification,ametric components and non-parametric components. The non-parametric components do not have a natural parameterization that is known or suggested from an analytical understanding of the underlying process. These include static nonlinear maps and noise models..We suggest a novel procedure for identif
16#
發(fā)表于 2025-3-24 07:10:54 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:46 | 只看該作者
18#
發(fā)表于 2025-3-24 14:54:08 | 只看該作者
Modeling and validation of nonlinear feedback systems,o modeling, identification and fault detection. Prior theoretical and application work in the area of model validation for robust control models focussed on linear fractional models. In this paper we discuss the extension of these methods to certain classes of nonlinear models. The Moore-Greitzer mo
19#
發(fā)表于 2025-3-24 20:11:38 | 只看該作者
Towards a harmonic blending of deterministic and stochastic frameworks in information processing,n processing, including identification, signal processing, communications, system design, etc. We begin with a discussion on distinctive features of the two frameworks and explanation of compelling reasons and motivating issues for introducing such a combined framework. Using persistent identificati
20#
發(fā)表于 2025-3-25 00:36:57 | 只看該作者
Suboptimal conditional estimators for restricted complexity set membership identification,res the solution of complex optimization problems. This paper studies different classes of suboptimal estimators and provides tight upper bounds on their identification error, in order to assess the reliability level of the identified models. Results are derived for fairly general classes of sets an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
睢宁县| 顺平县| 蒙城县| 朝阳市| 应城市| 兴义市| 华宁县| 丹巴县| 全南县| 新余市| 双江| 乐陵市| 隆尧县| 开江县| 青阳县| 会宁县| 丹寨县| 宣城市| 桂林市| 庆云县| 德昌县| 交口县| 井研县| 秦安县| 芦溪县| 庆安县| 尖扎县| 中阳县| 祁门县| 腾冲县| 托克托县| 岳池县| 会泽县| 大兴区| 祁东县| 维西| 景德镇市| 广南县| 秀山| 额济纳旗| 平遥县|