找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robustness in Identification and Control; A. Garulli (Assistant Professor),A. Tesi (Assistan Conference proceedings 1999 Springer-Verlag L

[復(fù)制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 13:43:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:31 | 只看該作者
Comments on model validation as set membership identification,gested in the “Identification-for-robust-control” context and two more classical statistical tests. By defining the set of models that would pass the chosen model validation test, we may interpret each of these as a set membership identification method. The consequences of such a viewpoint are discu
13#
發(fā)表于 2025-3-23 20:22:34 | 只看該作者
SM identification of model sets for robust control design from data,d and the effects of unmodeled dynamics have to be accounted for. The paper presents a unified view of the Set Membership Identification Theory (SMIT), as recently evolved by the authors and coworkers, aiming to deliver not a single model of the system to be identified, but a set of models, indicate
14#
發(fā)表于 2025-3-24 01:22:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:44:10 | 只看該作者
Semi-parametric methods for system identification,ametric components and non-parametric components. The non-parametric components do not have a natural parameterization that is known or suggested from an analytical understanding of the underlying process. These include static nonlinear maps and noise models..We suggest a novel procedure for identif
16#
發(fā)表于 2025-3-24 07:10:54 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:46 | 只看該作者
18#
發(fā)表于 2025-3-24 14:54:08 | 只看該作者
Modeling and validation of nonlinear feedback systems,o modeling, identification and fault detection. Prior theoretical and application work in the area of model validation for robust control models focussed on linear fractional models. In this paper we discuss the extension of these methods to certain classes of nonlinear models. The Moore-Greitzer mo
19#
發(fā)表于 2025-3-24 20:11:38 | 只看該作者
Towards a harmonic blending of deterministic and stochastic frameworks in information processing,n processing, including identification, signal processing, communications, system design, etc. We begin with a discussion on distinctive features of the two frameworks and explanation of compelling reasons and motivating issues for introducing such a combined framework. Using persistent identificati
20#
發(fā)表于 2025-3-25 00:36:57 | 只看該作者
Suboptimal conditional estimators for restricted complexity set membership identification,res the solution of complex optimization problems. This paper studies different classes of suboptimal estimators and provides tight upper bounds on their identification error, in order to assess the reliability level of the identified models. Results are derived for fairly general classes of sets an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 黑水县| 清水河县| 定远县| 嘉祥县| 科技| 白朗县| 钦州市| 汉源县| 青州市| 和硕县| 定陶县| 土默特左旗| 赤水市| 黄梅县| 青铜峡市| 剑川县| 仙居县| 清徐县| 乐陵市| 怀仁县| 屯留县| 宝丰县| 乌苏市| 怀来县| 政和县| 宜兰市| 永吉县| 云梦县| 沁阳市| 建水县| 依安县| 南漳县| 青铜峡市| 新河县| 林甸县| 北宁市| 抚顺县| 天长市| 徐水县| 清河县|