找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robustness Optimization for IoT Topology; Tie Qiu,Ning Chen,Songwei Zhang Book 2022 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: solidity
11#
發(fā)表于 2025-3-23 10:10:54 | 只看該作者
Robustness Optimization Based on Node Self-Learning,bjective optimization, machine learning, etc. In this chapter, we focus on exploring the self-learning ability of topological nodes to improve the dynamic optimization ability of network topology. Furthermore, we adopt a deep deterministic reinforcement learning policy model (DDLP) to improve the dy
12#
發(fā)表于 2025-3-23 14:59:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:07 | 只看該作者
Preliminaries of Robustness Optimization,mportant for network topology. Nevertheless, robustness optimization algorithms are essential for IoT applications to provide robust communication supports. This chapter outlines the preliminaries of related works about the robustness optimization for IoT applications, which is better for readers to easily understand the content of the book.
14#
發(fā)表于 2025-3-23 23:05:29 | 只看該作者
Book 2022ower consumption, cost,?and complexity. Optimizing the IoT topology?for?different applications and requirements can help to boost the?network’s performance?and save costs. More importantly, optimizing the topology robustness can ensure?security?and prevent network failure?at?the foundation level. In
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Robustness Optimization Based on Self-Organization, nodes within the communication range is a problem to be studied in this chapter. According to the characteristics of node self-organization communication, this chapter introduces solutions to improve network robustness from three aspects: path planning, topology construction, and time synchronization.
16#
發(fā)表于 2025-3-24 09:11:09 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:52 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:39 | 只看該作者
Robustness Optimization Based on Node Self-Learning,namic optimization ability of network topology, which regards the network topology as learning environment to train nodes’ learning behaviors. Experimental results show that DDLP has better optimization performance in robustness optimization when compared to other existing algorithms.
20#
發(fā)表于 2025-3-24 23:38:32 | 只看該作者
Book 2022he application of neural networks?and reinforcement learning?to?endow the node with self-learning ability to?allow?intelligent networking...This book is intended for students, practitioners, industry professionals, and researchers?who are eager to comprehend the vulnerabilities of IoT topology.?It h
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙县| 安泽县| 明光市| 眉山市| 弥勒县| 青海省| 勃利县| 佛冈县| 青阳县| 福清市| 舟曲县| 瑞丽市| 芜湖市| 凤凰县| 垦利县| 唐河县| 平乐县| 崇明县| 马边| 都兰县| 化州市| 霸州市| 洛扎县| 庆元县| 焉耆| 山西省| 托克逊县| 乐都县| 大同市| 通山县| 台东县| 兴山县| 布尔津县| 万荣县| 那坡县| 桃源县| 衡水市| 买车| 盐津县| 塔河县| 崇左市|