找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robustness Optimization for IoT Topology; Tie Qiu,Ning Chen,Songwei Zhang Book 2022 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: solidity
11#
發(fā)表于 2025-3-23 10:10:54 | 只看該作者
Robustness Optimization Based on Node Self-Learning,bjective optimization, machine learning, etc. In this chapter, we focus on exploring the self-learning ability of topological nodes to improve the dynamic optimization ability of network topology. Furthermore, we adopt a deep deterministic reinforcement learning policy model (DDLP) to improve the dy
12#
發(fā)表于 2025-3-23 14:59:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:07 | 只看該作者
Preliminaries of Robustness Optimization,mportant for network topology. Nevertheless, robustness optimization algorithms are essential for IoT applications to provide robust communication supports. This chapter outlines the preliminaries of related works about the robustness optimization for IoT applications, which is better for readers to easily understand the content of the book.
14#
發(fā)表于 2025-3-23 23:05:29 | 只看該作者
Book 2022ower consumption, cost,?and complexity. Optimizing the IoT topology?for?different applications and requirements can help to boost the?network’s performance?and save costs. More importantly, optimizing the topology robustness can ensure?security?and prevent network failure?at?the foundation level. In
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Robustness Optimization Based on Self-Organization, nodes within the communication range is a problem to be studied in this chapter. According to the characteristics of node self-organization communication, this chapter introduces solutions to improve network robustness from three aspects: path planning, topology construction, and time synchronization.
16#
發(fā)表于 2025-3-24 09:11:09 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:52 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:39 | 只看該作者
Robustness Optimization Based on Node Self-Learning,namic optimization ability of network topology, which regards the network topology as learning environment to train nodes’ learning behaviors. Experimental results show that DDLP has better optimization performance in robustness optimization when compared to other existing algorithms.
20#
發(fā)表于 2025-3-24 23:38:32 | 只看該作者
Book 2022he application of neural networks?and reinforcement learning?to?endow the node with self-learning ability to?allow?intelligent networking...This book is intended for students, practitioners, industry professionals, and researchers?who are eager to comprehend the vulnerabilities of IoT topology.?It h
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绵阳市| 开鲁县| 敦化市| 曲周县| 沙洋县| 台东市| 嘉荫县| 峨边| 大竹县| 德保县| 双城市| 临洮县| 疏附县| 韶山市| 神木县| 射洪县| 昌图县| 昭平县| 台南市| 平果县| 子洲县| 汉沽区| 汉川市| 江达县| 宝清县| 西和县| 江陵县| 辉县市| 连州市| 青海省| 孟津县| 合山市| 乃东县| 清新县| 蒲城县| 黄骅市| 长泰县| 麻城市| 尉氏县| 芜湖县| 武义县|