找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Subspace Estimation Using Low-Rank Optimization; Theory and Applicati Omar Oreifej,Mubarak Shah Book 2014 Springer International Pub

[復(fù)制鏈接]
查看: 8729|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:40:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Robust Subspace Estimation Using Low-Rank Optimization
副標(biāo)題Theory and Applicati
編輯Omar Oreifej,Mubarak Shah
視頻videohttp://file.papertrans.cn/832/831372/831372.mp4
概述Provides a comprehensive summary of the state-of-the-art methods and applications of Low-Rank Optimization.Reviews the latest approaches in a wide range of computer vision problems, including: Scene R
叢書名稱The International Series in Video Computing
圖書封面Titlebook: Robust Subspace Estimation Using Low-Rank Optimization; Theory and Applicati Omar Oreifej,Mubarak Shah Book 2014 Springer International Pub
描述.Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate? how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition..
出版日期Book 2014
關(guān)鍵詞Activity recognition; complex event recognition; computer vision; image processing; low-rank optimizatio
版次1
doihttps://doi.org/10.1007/978-3-319-04184-1
isbn_softcover978-3-319-35248-0
isbn_ebook978-3-319-04184-1Series ISSN 1571-5205
issn_series 1571-5205
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Robust Subspace Estimation Using Low-Rank Optimization影響因子(影響力)




書目名稱Robust Subspace Estimation Using Low-Rank Optimization影響因子(影響力)學(xué)科排名




書目名稱Robust Subspace Estimation Using Low-Rank Optimization網(wǎng)絡(luò)公開度




書目名稱Robust Subspace Estimation Using Low-Rank Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robust Subspace Estimation Using Low-Rank Optimization被引頻次




書目名稱Robust Subspace Estimation Using Low-Rank Optimization被引頻次學(xué)科排名




書目名稱Robust Subspace Estimation Using Low-Rank Optimization年度引用




書目名稱Robust Subspace Estimation Using Low-Rank Optimization年度引用學(xué)科排名




書目名稱Robust Subspace Estimation Using Low-Rank Optimization讀者反饋




書目名稱Robust Subspace Estimation Using Low-Rank Optimization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:18 | 只看該作者
Book 2014ns include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization p
板凳
發(fā)表于 2025-3-22 03:29:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:16:54 | 只看該作者
Background and Literature Review,rious low-rank formulations discussed in this book fall into several computer vision domains, we additionally review the latest techniques in each domain, including video denosing, turbulence mitigation, background subtraction, and activity recognition.
5#
發(fā)表于 2025-3-22 08:45:34 | 只看該作者
6#
發(fā)表于 2025-3-22 14:56:55 | 只看該作者
Background and Literature Review,ly used. Consequently, we discuss the most prominent advances in low-rank optimization, which is the main theoretical topic of this book. Since the various low-rank formulations discussed in this book fall into several computer vision domains, we additionally review the latest techniques in each dom
7#
發(fā)表于 2025-3-22 17:11:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:47 | 只看該作者
Simultaneous Turbulence Mitigation and Moving Object Detection,es for turbulence mitigation follow averaging or de-warping techniques. Although these methods can reduce the turbulence, they distort the independently moving objects which can often be of great interest. In this chapter, we address the problem of simultaneous turbulence mitigation and moving objec
9#
發(fā)表于 2025-3-23 05:06:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:00:49 | 只看該作者
Complex Event Recognition Using Constrained Rank Optimization,a tire, making a fire …etc. In this extremely challenging task, concepts have recently shown a promising direction, where core low-level events referred to as concepts are annotated and modelled using a portion of the training data, then each complex event is described using concept scores, which ar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津市市| 罗甸县| 平罗县| 左权县| 芷江| 静安区| 桑植县| 平山县| 新津县| 蕉岭县| 大洼县| 昌宁县| 武夷山市| 巴林右旗| 饶阳县| 许昌市| 鄂托克前旗| 西和县| 蒙城县| 鲜城| 横山县| 彭山县| 鹿邑县| 兰溪市| 祁阳县| 平阳县| 桦甸市| 凭祥市| 从化市| 广河县| 行唐县| 肥西县| 南充市| 绍兴市| 江西省| 鹤山市| 阆中市| 平塘县| 日喀则市| 从江县| 科技|