找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Network Compressive Sensing; Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
查看: 6941|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:43:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Robust Network Compressive Sensing
編輯Guangtao Xue,Yi-Chao Chen,Minglu Li
視頻videohttp://file.papertrans.cn/832/831336/831336.mp4
概述Provides anomaly detection technologies for various networking data from Internet.Introduces the theory and assumption behind the compressive sensing technology.Covers the theory of compressive sensin
叢書(shū)名稱(chēng)SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Robust Network Compressive Sensing;  Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur
描述.This book investigates compressive sensing techniques to provide a robust and general framework for network data analytics. The goal is to introduce a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications. Chapter 2 demonstrates the feasibility of compressive sensing in network analytics, the authors we apply it to detect anomalies in the customer care call dataset from a Tier 1 ISP in the United States. A regression-based model is applied to find the relationship between calls and events. The authors illustrate that compressive sensing is effective in identifying important factors and can leverage the low-rank structure and temporal stability to improve the detection accuracy. Chapter 3? discusses that there are several challenges in applying compressive sensing to real-world data. Understanding the reasons behind the challenges is important for designing methods and mitigating their impact. The authors analyze a wide range of real-world tr
出版日期Book 2022
關(guān)鍵詞Network analytics; Anomaly detection; Compressive sensing; Activity recognition; Data-driven synchroniza
版次1
doihttps://doi.org/10.1007/978-3-031-16829-1
isbn_softcover978-3-031-16828-4
isbn_ebook978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書(shū)目名稱(chēng)Robust Network Compressive Sensing影響因子(影響力)




書(shū)目名稱(chēng)Robust Network Compressive Sensing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Robust Network Compressive Sensing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Robust Network Compressive Sensing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Robust Network Compressive Sensing被引頻次




書(shū)目名稱(chēng)Robust Network Compressive Sensing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Robust Network Compressive Sensing年度引用




書(shū)目名稱(chēng)Robust Network Compressive Sensing年度引用學(xué)科排名




書(shū)目名稱(chēng)Robust Network Compressive Sensing讀者反饋




書(shū)目名稱(chēng)Robust Network Compressive Sensing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:40:36 | 只看該作者
Book 2022a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications.
地板
發(fā)表于 2025-3-22 07:19:26 | 只看該作者
5#
發(fā)表于 2025-3-22 12:36:41 | 只看該作者
Robust Network Compressive Sensing978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
6#
發(fā)表于 2025-3-22 13:07:27 | 只看該作者
Introduction,opportunities for network analytics. Network analytics can provide deep insights into the complex interactions among network entities, and has a wide range of applications in wireless networks across all protocol layers.
7#
發(fā)表于 2025-3-22 18:14:55 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/r/image/831336.jpg
8#
發(fā)表于 2025-3-22 23:17:04 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:25:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁寿县| 盐城市| 肥西县| 北宁市| 宜兰市| 青岛市| 韩城市| 沂水县| 上栗县| 隆安县| 理塘县| 兴城市| 修水县| 横峰县| 五寨县| 桃园县| 深州市| 阳山县| 宁都县| 陕西省| 天津市| 师宗县| 庆城县| 育儿| 谢通门县| 宝清县| 屏东市| 崇文区| 府谷县| 仙游县| 兰州市| 乐都县| 呼和浩特市| 古蔺县| 松溪县| 银川市| 吉林省| 巢湖市| 古蔺县| 青州市| 绵阳市|