找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Multi-Grid Methods; Proceedings of the F Wolfgang Hackbusch Conference proceedings 1989 Springer Fachmedien Wiesbaden 1989 Computer.

[復(fù)制鏈接]
樓主: melancholy
11#
發(fā)表于 2025-3-23 12:58:33 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:53 | 只看該作者
Multigrid Methods for the Solution of the Compressible Navier-Stokes Equations,quations as well. Examples for multigrid applications in explicit and implicit Euler Solutions are given by Cima, Johnson [5], Ni [6], Jameson [7] and by Hemker[8], Mulder[9] and others. Navier-Stokes applications can be found e. g. in the paper of Shaw, Wesseling [10], Thomas et al [11] and Schr?de
13#
發(fā)表于 2025-3-23 20:58:25 | 只看該作者
Multilevel Preconditioning Matrices and Multigrid V-Cycle Methods,iew this method in the framework of the classical multigrid method of V-cycle type. For this natural multigrid method it is enough to use the corresponding two-level ordering of the stiffness matrix at each discretization level. Then the smoothing procedure is naturally derived from the stiffness ma
14#
發(fā)表于 2025-3-24 02:08:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:06 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:29 | 只看該作者
Algebraic Multigrid Methods and the Schur Complement,In this paper we propose and discuss a general purely algebraic framework for multilevel iterative schemes for solving linear Systems where the role of the ‘coarse grid’ Operators is played by Schur complements.
17#
發(fā)表于 2025-3-24 13:24:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:04 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:16 | 只看該作者
Treatment of Singular Perturbation Problems with Multigrid Methods, linear problems were considered. An algorithm has been found heuristically for which the usual lower bound for the spectral radius of the iteration matrix of 1/2 does not hold. Artificial viscosity is used to obtain a stable discretisation. The algorithm is discussed and numerical results are presented.
20#
發(fā)表于 2025-3-24 23:22:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武威市| 天等县| 合水县| 平陆县| 台安县| 邓州市| 西乌| 巴彦县| 门头沟区| 绥德县| 莱西市| 成武县| 平舆县| 崇信县| 耿马| 大关县| 娱乐| 佛教| 河池市| 深州市| 云浮市| 大冶市| 阿巴嘎旗| 同仁县| 平度市| 云阳县| 舒兰市| 文水县| 翼城县| 萝北县| 江油市| 泰顺县| 女性| 龙州县| 乌审旗| 温泉县| 繁峙县| 肇东市| 乌恰县| 长沙县| 太仓市|