找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ring and Module Theory; Toma Albu,Gary F. Birkenmeier,Adnan Tercan Conference proceedings 2010 Birkh?user Basel 2010 algebra.commutative a

[復(fù)制鏈接]
樓主: Forestall
41#
發(fā)表于 2025-3-28 17:31:15 | 只看該作者
42#
發(fā)表于 2025-3-28 20:38:28 | 只看該作者
43#
發(fā)表于 2025-3-29 01:03:56 | 只看該作者
Lia Va?,Charalampos Papachristou into the K, D, Qa, Tla regions containing genes for class I MHC molecules; I region containing genes for class II MHC molecules; and S region containing genes for class III MHC molecules. A molecular map of the H-2 complex has also been developed with about 1,600 Kb of DNA having been cosmid cloned
44#
發(fā)表于 2025-3-29 05:21:02 | 只看該作者
Roger Wiegand,Sylvia Wiegand class I and class II loci mapping in the K, D, and I regions. This polymorphism has two components. The first is the large number of alleles identified in the wild (Klein and Figueroa, 1981). None of these alleles is present in the population at high frequencies and the total number of alleles is e
45#
發(fā)表于 2025-3-29 10:16:09 | 只看該作者
46#
發(fā)表于 2025-3-29 11:26:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:02:03 | 只看該作者
48#
發(fā)表于 2025-3-29 23:35:50 | 只看該作者
Right Weakly Regular Rings: A Survey,gives a survey of the theory of r.w.r. rings and some closely allied topics, from its origins in the early 1950’s up to the present state-of-the-art. The paper contains sections on: equivalent conditions, examples and constructions, and related conditions.
49#
發(fā)表于 2025-3-30 00:51:12 | 只看該作者
Weak Lifting Modules with Small Radical, a module . is weak lifting if and only if . is a direct sum of local modules of some special type. Such modules were further studied by Tribak (2007). In this note we study weak lifting modules . with small radical over arbitrary rings. We prove that . is an irredundant sum .=Σ... where each .. is
50#
發(fā)表于 2025-3-30 07:20:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石家庄市| 汝南县| 五华县| 大关县| 南充市| 临邑县| 宜兴市| 绍兴县| 罗甸县| 太仆寺旗| 和田市| 德昌县| 封开县| 关岭| 永康市| 青川县| 乌鲁木齐县| 石城县| 贞丰县| 齐齐哈尔市| 哈尔滨市| 县级市| 汪清县| 新泰市| 剑阁县| 剑川县| 达日县| 清苑县| 锡林浩特市| 东乌珠穆沁旗| 申扎县| 康马县| 平乐县| 炎陵县| 郸城县| 新乡县| 鹰潭市| 喀什市| 怀柔区| 博乐市| 曲靖市|