找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 20021st edition Springer Science+Business Media New York 2002

[復制鏈接]
樓主: Menthol
11#
發(fā)表于 2025-3-23 11:15:26 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:07 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:15 | 只看該作者
Riemannian Geometry of Contact and Symplectic Manifolds978-1-4757-3604-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
14#
發(fā)表于 2025-3-24 00:30:34 | 只看該作者
0743-1643 ries have been out of print for some time and it seems appropriate that an expanded version of this material should become available. The present text deals with the Riemannian geometry of both symplectic and contact manifolds, although the book is more contact than symplectic. This work is based on
15#
發(fā)表于 2025-3-24 05:59:07 | 只看該作者
16#
發(fā)表于 2025-3-24 07:34:22 | 只看該作者
Contact Manifolds, manifold is orientable. Also . has rank 2. on the Grassmann algebra ∧ ... at each point . ∈ . and thus we have a 1-dimensional subspace, {. ∈ ...|.(...) = 0}, on which . ≠ 0 and which is complementary to the subspace on which . = 0. Therefore choosing .. in this subspace normalized by .(..) = 1 we
17#
發(fā)表于 2025-3-24 14:33:19 | 只看該作者
Associated Metrics,rtant for our study; many of these were already mentioned in Chapter 1. For more detail the reader is referred to Gray and Hervella [1980] , Kobayashi-Nomizu [1963–69, Chapter IX] and Kobayashi-Wu [1983]; also, despite its classical nature, the book of Yano [1965] contains helpful information on man
18#
發(fā)表于 2025-3-24 14:54:27 | 只看該作者
,Submanifolds of K?hler and Sasakian Manifolds,c results. For a submanifold . of a Riemannian manifold (., .) we denote the induced metric by .. Then the Levi-Cività connection ? of . and the second fundamental form . are related to the ambient Levi-Cività connection ?? by ..
19#
發(fā)表于 2025-3-24 20:12:27 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 09:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宣威市| 凤山县| 玉门市| 平谷区| 全椒县| 昌平区| 万州区| 滦平县| 梁山县| 务川| 临桂县| 老河口市| 康平县| 忻州市| 芜湖县| 信宜市| 马龙县| 宁南县| 泾川县| 融水| 大埔区| 抚松县| 西峡县| 历史| 时尚| 车险| 高台县| 澎湖县| 墨江| 平远县| 龙里县| 大方县| 遵义市| 天柱县| 贡嘎县| 通江县| 日土县| 张家港市| 亳州市| 广河县| 和硕县|