找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復制鏈接]
查看: 15823|回復: 35
樓主
發(fā)表于 2025-3-21 16:24:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Geometry
編輯Sylvestre Gallot,Dominique Hulin,Jacques Lafontain
視頻videohttp://file.papertrans.cn/831/830308/830308.mp4
概述Includes supplementary material:
叢書名稱Universitext
圖書封面Titlebook: Riemannian Geometry;  Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004
描述From the preface:Many years have passed since the first edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincaré conjecture. In another direction, Geometric Group Theory, a very active field nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. But let us stop hogging the limelight. This is justa textbook. We hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi
出版日期Textbook 2004Latest edition
關鍵詞Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
版次3
doihttps://doi.org/10.1007/978-3-642-18855-8
isbn_softcover978-3-540-20493-0
isbn_ebook978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Riemannian Geometry影響因子(影響力)




書目名稱Riemannian Geometry影響因子(影響力)學科排名




書目名稱Riemannian Geometry網(wǎng)絡公開度




書目名稱Riemannian Geometry網(wǎng)絡公開度學科排名




書目名稱Riemannian Geometry被引頻次




書目名稱Riemannian Geometry被引頻次學科排名




書目名稱Riemannian Geometry年度引用




書目名稱Riemannian Geometry年度引用學科排名




書目名稱Riemannian Geometry讀者反饋




書目名稱Riemannian Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:54:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:37 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:38 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
5#
發(fā)表于 2025-3-22 11:35:17 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
6#
發(fā)表于 2025-3-22 15:28:49 | 只看該作者
0172-5939 e hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi978-3-540-20493-0978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
7#
發(fā)表于 2025-3-22 19:37:06 | 只看該作者
8#
發(fā)表于 2025-3-23 00:43:47 | 只看該作者
Analysis on Riemannian manifolds and Ricci curvature,erties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the proofs. It can be said that the difficulties of the latter case, compared with the former, are essentially conceptual.
9#
發(fā)表于 2025-3-23 04:16:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
营口市| 沙河市| 涟源市| 贵定县| 高青县| 阿瓦提县| 邵武市| 玉龙| 隆尧县| 肇庆市| 临武县| 余姚市| 定州市| 左贡县| 平度市| 康平县| 阿图什市| 南安市| 视频| 张家界市| 天台县| 康马县| 桐乡市| 桂阳县| 水城县| 珲春市| 阿勒泰市| 长葛市| 泰顺县| 文成县| 林甸县| 牟定县| 于都县| 玉门市| 敦化市| 太仆寺旗| 保靖县| 祁东县| 白朗县| 衡东县| 金华市|