找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemann Surfaces and Generalized Theta Functions; Robert C. Gunning Book 1976 Springer-Verlag Berlin Heidelberg 1976 Division.Equivalence.

[復制鏈接]
樓主: 頻率
11#
發(fā)表于 2025-3-23 12:46:41 | 只看該作者
Book 1976nected Riemann surface M of genus g is realized by an irreducible (g -1)-dimensional analytic subvariety, an irreducible hypersurface, of the associated g-dimensional complex torus J(M); this hyper- 1 surface W- r;;;, J(M) is the image of the natural mapping Mg- -+J(M), and is g 1 1 birationally equ
12#
發(fā)表于 2025-3-23 15:19:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:06 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/r/image/830297.jpg
14#
發(fā)表于 2025-3-23 23:26:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:49:37 | 只看該作者
978-3-642-66384-0Springer-Verlag Berlin Heidelberg 1976
16#
發(fā)表于 2025-3-24 06:37:46 | 只看該作者
Complex Manifolds and Vector Bundles,et of the .-dimensional number space ?.. A . {., .} of such a manifold . consists of a covering of . by open subsets . together with homeomorphisms .:.→. between the sets . and open subsets .??.; the sets . are called . and the mappings . are called .. A topological manifold of course always admits
17#
發(fā)表于 2025-3-24 12:25:33 | 只看該作者
Riemann Surfaces,me familiarity with the topology of surfaces will be presupposed; so it can be taken as known that topologically . is a sphere with . handles, where the integer . is called the genus of the surface. The surface M can then be dissected into a contractible set by cutting along 2. paths which issue fro
18#
發(fā)表于 2025-3-24 15:01:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:43 | 只看該作者
Book 1976long been basic to the study both of Riemann surfaces and of complex tori. A Riemann surface is naturally imbedded as an analytic submanifold in its associated torus; and various spaces of linear equivalence elasses of divisors on the surface (or equivalently spaces of analytic equivalence elasses o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
双桥区| 依兰县| 河津市| 牟定县| 丽江市| 全南县| 岚皋县| 东阿县| 北京市| 饶平县| 射阳县| 山阳县| 西乡县| 司法| 姚安县| 北安市| 镇雄县| 翁牛特旗| 黄龙县| 乌拉特中旗| 怀仁县| 平顶山市| 于都县| 敦煌市| 驻马店市| 扶余县| 罗定市| 黔西县| 霍城县| 青铜峡市| 泗洪县| 永修县| 丰都县| 托克逊县| 永泰县| 安庆市| 太湖县| 福安市| 驻马店市| 南汇区| 昔阳县|