找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rheology of Drag Reducing Fluids; Aroon Shenoy Book 2020 Springer Nature Switzerland AG 2020 Drag Reducing Fluids.Drag Reducing Agents.Bou

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 10:49:25 | 只看該作者
Velocity Profiles and Friction Factors in Turbulent Pipe Flows,r ducts are also treated in this chapter. Not all pipes are smooth, and in reality, they have a certain level of surface defects marked by protrusions or indentations. Expression for fully developed velocity profiles in rough straight circular pipes is presented as well.
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Drag Reducing Agents: A Historical Perspective,and surfactants. It reviews past work on this subject and provides a historical perspective about this phenomenon. The chapter also discusses the proposed theories of drag reduction indicating how the extent of drag reduction lies between the Blasius line and the maximum drag reduction asymptote. An
13#
發(fā)表于 2025-3-23 21:46:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:13 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:55 | 只看該作者
Turbulent Forced and Mixed Convection Heat Transfer in Internal Flows, well estimated without solving the energy equation using momentum/heat transfer analogies. Expressions for the local Stanton numbers are derived for external flow (vertical pipes) and internal flow (circular pipes) using the analogy. An approximate theoretical analysis of the effect of buoyancy on
16#
發(fā)表于 2025-3-24 09:43:07 | 只看該作者
Natural, Forced, and Mixed Convection Heat Transfer in External Flows Through Porous Media,plate embedded in a porous medium. The final form of the equation for mixed convection is like those of the correlating equations for combined laminar forced and free convection heat transfer for Newtonian fluids and for non- Newtonian fluids in homogeneous media. Such equations which interpolate th
17#
發(fā)表于 2025-3-24 14:30:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:44:36 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延边| 澳门| 乳山市| 三河市| 紫阳县| 民勤县| 兰考县| 杭州市| 武穴市| 苗栗市| 望江县| 开封县| 新津县| 阿鲁科尔沁旗| 成安县| 益阳市| 黄骅市| 高州市| 花莲县| 海口市| 新河县| 遂川县| 江北区| 禄丰县| 镇坪县| 永靖县| 偏关县| 资溪县| 蚌埠市| 芦溪县| 乳山市| 河南省| 苍南县| 新沂市| 太仓市| 昭苏县| 徐水县| 曲麻莱县| 西丰县| 巴林右旗| 武城县|