找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 9th International Co Tobias Nipkow Conference proceedings 1998 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
樓主: LANK
41#
發(fā)表于 2025-3-28 17:00:55 | 只看該作者
42#
發(fā)表于 2025-3-28 20:34:37 | 只看該作者
43#
發(fā)表于 2025-3-29 00:43:33 | 只看該作者
Algorithms and reductions for rewriting problems,ique-normal-form property are shown Expspace-hard for commutative semi-thue systems. We also show that there is a family of string rewrite systems for which the word problem is trivially decidable but confluence undecidable, and we show a linear equational theory with decidable word problem but undecidable linear equational matching.
44#
發(fā)表于 2025-3-29 04:16:47 | 只看該作者
Modularity of termination using dependency pairs,s yields new modularity criteria which extend previous results in this area. In particular, existing results for modularity of innermost termination can easily be obtained as direct consequences of our new criteria.
45#
發(fā)表于 2025-3-29 10:46:27 | 只看該作者
0302-9743 ing rewriting, theorem proving, resolution, normalization, unification, equational logics, lambda calculus, constraint solving, and functional programming.978-3-540-64301-2978-3-540-69721-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
46#
發(fā)表于 2025-3-29 14:14:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:35:56 | 只看該作者
Ordering constraints over feature trees expressed in second-order monadic logic,h existential quantifiers is decidable but PSPACE-hard. Our decidability proof is based on a new technique where feature constraints are expressed in second-order monadic logic with countably many successors SΩS. We thereby reduce the entailment problem of FT≤with existential quantification to Rabin‘s famous theorem on tree automata.
48#
發(fā)表于 2025-3-29 21:05:35 | 只看該作者
49#
發(fā)表于 2025-3-30 03:29:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:08:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芮城县| 平安县| 永济市| 洛南县| 德保县| 射阳县| 浦江县| 东乡| 安陆市| 浮梁县| 鲁山县| 清丰县| 黔东| 淮北市| 巩留县| 当阳市| 南宫市| 小金县| 崇礼县| 宜阳县| 连山| 沭阳县| 永平县| 鄂托克前旗| 和林格尔县| 纳雍县| 科技| 宝应县| 郑州市| 澄江县| 武邑县| 永康市| 宝山区| 平乐县| 色达县| 海晏县| 皮山县| 天祝| 囊谦县| 康乐县| 酉阳|