找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 15th International C Vincent Oostrom Conference proceedings 2004 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
樓主: 警察在苦笑
21#
發(fā)表于 2025-3-25 05:27:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:39 | 只看該作者
23#
發(fā)表于 2025-3-25 12:42:05 | 只看該作者
,B?hm-Like Trees for Term Rewriting Systems,y-Longo trees, and the Berarducci trees. That is, the similarities between the B?hm-like trees of the .-calculus. Given a term . a tree partially represents the root-stable part of . as created in each maximal fair reduction of .. In addition to defining B?hm-like trees for TRSs we define a subclass
24#
發(fā)表于 2025-3-25 18:53:36 | 只看該作者
Inductive Theorems for Higher-Order Rewriting,orems is introduced to reflect higher-order feature of simply typed term rewriting. Then the inductionless induction methods in first-order term rewriting are incorporated to verify higher-order inductive theorems. In order to ensure that higher-order inductive theorems are closed under contexts, th
25#
發(fā)表于 2025-3-25 21:34:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:54:19 | 只看該作者
Monadic Second-Order Unification Is NP-Complete,Monadic Second-Order Unification (MSOU) is Second-Order Unification where all function constants occurring in the equations are unary. Here we prove that the problem of deciding whether a set of monadic equations has a unifier is NP-complete. We also prove that Monadic Second-Order Matching is also NP-complete.
27#
發(fā)表于 2025-3-26 07:28:27 | 只看該作者
TORPA: Termination of Rewriting Proved Automatically,The tool TORPA (Termination of Rewriting Proved Automatically) can be used to prove termination of string rewriting systems (SRSs) fully automatically. The underlying techniques include semantic labelling, polynomial interpretations, recursive path order, the dependency pair method and match bounds of right hand sides of forward closures.
28#
發(fā)表于 2025-3-26 11:58:00 | 只看該作者
29#
發(fā)表于 2025-3-26 15:55:52 | 只看該作者
30#
發(fā)表于 2025-3-26 20:01:51 | 只看該作者
Vincent OostromIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 湖南省| 蓬莱市| 桃园市| 保亭| 漳浦县| 永州市| 潮安县| 榆林市| 定边县| 池州市| 英超| 蕲春县| 筠连县| 柘荣县| 舟山市| 卢龙县| 瓮安县| 阿拉善左旗| 双鸭山市| 镇江市| 芦溪县| 四川省| 永济市| 北海市| 伊春市| 万安县| 雅江县| 平乡县| 通山县| 嵩明县| 措勤县| 辽中县| 灵武市| 新干县| 南昌市| 闽清县| 张家港市| 许昌市| 东明县| 巴东县|