找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 19th International C Andrei Voronkov Conference proceedings 2008 Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
31#
發(fā)表于 2025-3-26 21:17:02 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:17 | 只看該作者
33#
發(fā)表于 2025-3-27 07:07:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:56:38 | 只看該作者
35#
發(fā)表于 2025-3-27 15:33:10 | 只看該作者
36#
發(fā)表于 2025-3-27 21:30:56 | 只看該作者
37#
發(fā)表于 2025-3-28 00:00:05 | 只看該作者
38#
發(fā)表于 2025-3-28 05:51:22 | 只看該作者
Finer Is Better: Abstraction Refinement for Rewriting Approximations,.e. proving or disproving that a given term is reachable from a set of input terms, provides an efficient verification technique. For disproving reachability (i.e. proving non reachability of a term) on non terminating and non confluent rewriting models, Knuth-Bendix completion and other usual rewri
39#
發(fā)表于 2025-3-28 09:33:54 | 只看該作者
A Needed Rewriting Strategy for Data-Structures with Pointers,uctures that are commonly used in programming, with cycles and sharing. We show that this reduction strategy is optimal w.r.t. a given dependency schema, which intuitively encodes the “interferences” among the nodes in the term-graphs. We provide a new way of computing such dependency schemata.
40#
發(fā)表于 2025-3-28 12:57:34 | 只看該作者
Effectively Checking the Finite Variant Property,e iff for each term . there is a finite set {..,...,..} of →.-normalized instances of . so that any instance of . normalizes to an instance of some .. modulo .. This is a very useful property for cryptographic protocol analysis, and for solving both unification and disunification problems. Yet, at p
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
甘肃省| 尉犁县| 旬阳县| 开封市| 安龙县| 五家渠市| 开鲁县| 南昌市| 饶阳县| 德庆县| 廉江市| 沙雅县| 正定县| 谢通门县| 开封市| 龙里县| 化德县| 普格县| 富蕴县| 榕江县| 惠水县| 门头沟区| 岳阳市| 黄石市| 东海县| 定远县| 石景山区| 昌乐县| 华宁县| 凌海市| 如东县| 永登县| 万安县| 云霄县| 桦南县| 焦作市| 张家界市| 灵武市| 内江市| 彩票| 玉溪市|