找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 10th International C Paliath Narendran,Michael Rusinowitch Conference proceedings 1999 Springer-Verl

[復(fù)制鏈接]
樓主: Objective
21#
發(fā)表于 2025-3-25 03:50:57 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:30 | 只看該作者
Undecidability of the ,Part of the Theory of Ground Term Algebra Modulo an AC SymbolWe show that the .part of the equational theory modulo an AC symbol is undecidable. This solves the open problem 25 from the RTA list ([DJK91],[DJK93],[DJK95])
23#
發(fā)表于 2025-3-25 14:12:02 | 只看該作者
24#
發(fā)表于 2025-3-25 16:32:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:19:12 | 只看該作者
https://doi.org/10.1007/3-540-48685-2Automat; Constraint; Graph Rewriting; Higher Order Rewriting; Lex; String Rewriting; Term Rewriting; Theore
26#
發(fā)表于 2025-3-26 03:47:52 | 只看該作者
Normalisation in Weakly Orthogonal Rewriting(head-)normalising for almost orthogonal rewrite systems. We study (head-)normalisation for the larger class of weakly orthogonal rewrite systems. (Infinitary) normalisation is established and a counterexample against head-normalisation is given.
27#
發(fā)表于 2025-3-26 05:15:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:01 | 只看該作者
A Characterisation of Multiply Recursive Functions with Higman’s Lemmaisation of the expressiveness of Higman’s lemma when applied to rewriting theory. The underlying argument of our construction is to connect the order type and the derivation length via the Hardy hierarchy.
29#
發(fā)表于 2025-3-26 13:52:57 | 只看該作者
Normalization via Rewrite Closures a rewrite closure, which is a generalization of the idea of a congruence closure. Our results generalize previous results on congruence closure-based normalization methods. The description of known methods within our formalism also allows a better understanding of these procedures.
30#
發(fā)表于 2025-3-26 18:56:04 | 只看該作者
978-3-540-66201-3Springer-Verlag Berlin Heidelberg 1999
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
门源| 峨山| 调兵山市| 巍山| 浮梁县| 霍城县| 新和县| 朝阳区| 昌都县| 新泰市| 宜宾县| 周口市| 友谊县| 福海县| 西华县| 潼关县| 天门市| 额尔古纳市| 晴隆县| 昆山市| 天水市| 昌宁县| 大同市| 凤山县| 宁安市| 兰西县| 乐昌市| 合作市| 吉林省| 岢岚县| 陈巴尔虎旗| 垫江县| 金秀| 弋阳县| 施秉县| 互助| 县级市| 涿州市| 洛宁县| 水富县| 江门市|