找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reversible Logic Synthesis; From Fundamentals to Anas N. Al-Rabadi Book 2004 Springer-Verlag Berlin Heidelberg 2004 Boolean function.Comput

[復(fù)制鏈接]
樓主: 太平間
11#
發(fā)表于 2025-3-23 13:37:29 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:39 | 只看該作者
New Multiple-Valued S/D Trees and their Canonical Galois Field Sum-Of-Product Forms,Product (GFSOP) expressions (i.e., expressions that are in the sum-of-product form which uses the additions and multiplications of arbitrary radix Galois field that was introduced in Chapt. 2), creation of new forms, decision diagrams, and regular structures (Such new structures will be discussed in
14#
發(fā)表于 2025-3-24 00:54:39 | 只看該作者
Reversible Logic: Fundamentals and New Results,-to-one mappings between vectors of inputs and outputs, thus the vector of input states (values) can be always uniquely reconstructed from the vector of output states (values). Conservative circuits [98,210,211,212] are circuits that have the same number of values in inputs and outputs (e.g., the sa
15#
發(fā)表于 2025-3-24 05:06:57 | 只看該作者
16#
發(fā)表于 2025-3-24 07:04:43 | 只看該作者
Anas N. Al-Rabadiourses and the evident powerlessness of women. As I started to track this issue it receded further and further into the early cultures that had formed modern civilizations. The question of the roots of misogyny simply became ‘too big‘ and I came to accept the limit that the best I could do was to tr
17#
發(fā)表于 2025-3-24 11:27:47 | 只看該作者
18#
發(fā)表于 2025-3-24 18:24:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:15:42 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆明市| 邯郸县| 益阳市| 南京市| 仙游县| 中西区| 类乌齐县| 青海省| 巴马| 泌阳县| 金昌市| 台前县| 峨眉山市| 墨玉县| 庆云县| 阳新县| 桐庐县| 金昌市| 特克斯县| 乃东县| 依兰县| 麻江县| 铜山县| 宝山区| 资溪县| 孝昌县| 两当县| 鄯善县| 福鼎市| 灵宝市| 锦屏县| 丹巴县| 宜兰市| 木兰县| 平谷区| 太仆寺旗| 多伦县| 翁牛特旗| 内丘县| 河间市| 筠连县|