找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resurgence, Physics and Numbers; Frédéric Fauvet,Dominique Manchon,David Sauzin Conference proceedings 2017 Scuola Normale Superiore Pisa

[復(fù)制鏈接]
樓主: 切口
21#
發(fā)表于 2025-3-25 07:02:48 | 只看該作者
Renormalised conical zeta values,ial sums to exponential integrals. When restricted to Chen cones, it reduces to Connes and Kreimer’s Algebraic Birkhoff Factorisation for maps with values in the algebra of ordinary meromorphic functions in one variable.
22#
發(fā)表于 2025-3-25 11:29:58 | 只看該作者
Conference proceedings 2017y leading experts in the field, reflecting the themes that were tackled at this event:? Stokes phenomenon and resurgence, in various mathematical and physical contexts but also related constructions in algebraic combinatorics and results concerning numbers, specifically multiple zetavalues.?
23#
發(fā)表于 2025-3-25 14:20:25 | 只看該作者
Feynman diagrams and their algebraic lattices, the counterterms in zero-dimensional QFTs using the lattice-Moebius function. Different applications for the tadpole-free quotient, in which all appearing elements correspond to semimodular lattices, are discussed.
24#
發(fā)表于 2025-3-25 17:42:41 | 只看該作者
978-88-7642-612-4Scuola Normale Superiore Pisa 2017
25#
發(fā)表于 2025-3-25 22:40:57 | 只看該作者
Resurgence, Physics and Numbers978-88-7642-613-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
26#
發(fā)表于 2025-3-26 02:53:24 | 只看該作者
The resurgent approach to topological string theory,e and complex geometry, and strong/weak dualities in Physics. Starting from the asymptotic series representation of the free energy I outline recent results which are first steps for arriving at a transseries, which should in principle contain all the nonperturbative information of the theory.
27#
發(fā)表于 2025-3-26 05:52:06 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:49 | 只看該作者
29#
發(fā)表于 2025-3-26 16:38:41 | 只看該作者
Gerald V. Dunne,Mithat ünsalche regels die de medicus practicus in acht diende te nemen bij zijn beroepsuitoefening (bijvoorbeeld de regels met betrekking tot het opstellen van overlijdensverklaringen en die met betrekking tot besmettelijke ziekten), maar die regels hoefden niet als knellend te worden ervaren. Ver weg was de w
30#
發(fā)表于 2025-3-26 20:16:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 黄石市| 赞皇县| 麻栗坡县| 德安县| 柳江县| 长泰县| 阿荣旗| 开远市| 江阴市| 哈巴河县| 石棉县| 锡林浩特市| 江门市| 页游| 商城县| 丰镇市| 岱山县| 古丈县| 余庆县| 井陉县| 南陵县| 彭阳县| 松江区| 桐城市| 天门市| 岑溪市| 石嘴山市| 黎川县| 从江县| 区。| 襄城县| 九龙县| 江津市| 金昌市| 拉孜县| 盐边县| 枝江市| 南平市| 辛集市| 厦门市|