找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Restricted-Orientation Convexity; Eugene Fink,Derick Wood Book 2004 Springer-Verlag Berlin Heidelberg 2004 Euclidean geometry.Generalized

[復(fù)制鏈接]
查看: 16056|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:03:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Restricted-Orientation Convexity
編輯Eugene Fink,Derick Wood
視頻videohttp://file.papertrans.cn/829/828874/828874.mp4
概述First book on the topic
叢書名稱Monographs in Theoretical Computer Science. An EATCS Series
圖書封面Titlebook: Restricted-Orientation Convexity;  Eugene Fink,Derick Wood Book 2004 Springer-Verlag Berlin Heidelberg 2004 Euclidean geometry.Generalized
描述.Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. We explore the properties of this generalized convexity in multidimensional Euclidean space, describes restricted-orientation analogs of lines, hyperplanes, flats, and halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. We then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to those of standard convexity. .
出版日期Book 2004
關(guān)鍵詞Euclidean geometry; Generalized convexity; Higher dimensions; Theory; Visibility; algorithms; algorithm an
版次1
doihttps://doi.org/10.1007/978-3-642-18849-7
isbn_softcover978-3-642-62323-3
isbn_ebook978-3-642-18849-7Series ISSN 1431-2654 Series E-ISSN 2193-2069
issn_series 1431-2654
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Restricted-Orientation Convexity影響因子(影響力)




書目名稱Restricted-Orientation Convexity影響因子(影響力)學(xué)科排名




書目名稱Restricted-Orientation Convexity網(wǎng)絡(luò)公開(kāi)度




書目名稱Restricted-Orientation Convexity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Restricted-Orientation Convexity被引頻次




書目名稱Restricted-Orientation Convexity被引頻次學(xué)科排名




書目名稱Restricted-Orientation Convexity年度引用




書目名稱Restricted-Orientation Convexity年度引用學(xué)科排名




書目名稱Restricted-Orientation Convexity讀者反饋




書目名稱Restricted-Orientation Convexity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:43 | 只看該作者
Closing Remarks,We have defined two generalizations of convexity in higher dimensions, called O-convexity and strong O-convexity, and investigated their properties. We conclude with a summary of the main results (Sect. 7.1), related conjectures (Sect. 7.2), and directions for future research (Sect. 7.3).
板凳
發(fā)表于 2025-3-22 01:22:15 | 只看該作者
地板
發(fā)表于 2025-3-22 07:10:17 | 只看該作者
5#
發(fā)表于 2025-3-22 09:41:39 | 只看該作者
6#
發(fā)表于 2025-3-22 13:48:57 | 只看該作者
Computational Problems,ernels, and identifying the regions visible from a given point. Researchers addressed the analogous standard-convexity problems in the early days of computational geometry; for example, consult the text of Preparata and Shamos [34]. They also developed similar techniques for several types of non-traditional convexity, including planar O-convexity.
7#
發(fā)表于 2025-3-22 20:52:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:21:32 | 只看該作者
Generalized Halfspaces, them with standard halfspaces (Sect. 5.1). Then, we define directed O-halfspaces, which are a subclass of O-halfspaces with several special properties (Sect. 5.2). Finally, we characterize O-halfspaces in terms of their boundaries (Sect. 5.3) and complements (Sect. 5.4).
9#
發(fā)表于 2025-3-23 03:20:11 | 只看該作者
Strong Convexity,ve a condition for the equivalence of two orientation sets (Sect. 6.2). Finally, we study strongly O-convex halfspaces and characterize strongly O-convex sets through halfspace intersections (Sect. 6.3).
10#
發(fā)表于 2025-3-23 05:46:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 临猗县| 自治县| 伊宁市| 叶城县| 铜鼓县| 什邡市| 崇义县| 丰台区| 台山市| 延安市| 偃师市| 托克逊县| 波密县| 广丰县| 交口县| 安阳县| 囊谦县| 通山县| 托克逊县| 方山县| 兖州市| 都兰县| 和田县| 安国市| 瑞金市| 宜黄县| 黑河市| 仁化县| 聂拉木县| 小金县| 武清区| 徐水县| 红河县| 巍山| 阜城县| 象山县| 闽侯县| 肇源县| 大英县| 兴海县|