找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resource-Efficient Medical Image Analysis; First MICCAI Worksho Xinxing Xu,Xiaomeng Li,Huazhu Fu Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 12:27:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:23 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:36:34 | 只看該作者
Self-supervised Antigen Detection Artificial Intelligence (SANDI), on an average of about 300–1000 annotations per cell type. By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for multiplexed imaging data.
15#
發(fā)表于 2025-3-24 06:26:23 | 只看該作者
,Single Domain Generalization via?Spontaneous Amplitude Spectrum Diversification,proposed approach first converts the image into frequency domain using the Fourier transform, and then spontaneously generates diverse samples by editing the amplitude spectrum using a pool of randomization operations. The proposed approach is established upon the assumption that the high-level sema
16#
發(fā)表于 2025-3-24 07:13:54 | 只看該作者
,Triple-View Feature Learning for?Medical Image Segmentation,is strategy enables triple-view learning of generic medical image datasets. Bespoke overlap-based and boundary-based loss functions are tailored to the different stages of the training. The segmentation results are evaluated on four publicly available benchmark datasets including Ultrasound, CT, MRI
17#
發(fā)表于 2025-3-24 13:14:23 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:47 | 只看該作者
,Leverage Supervised and?Self-supervised Pretrain Models for?Pathological Survival Analysis via?a?Sieady trained supervised and self-supervised models for pathological survival analysis. In this paper, we present a simple and low-cost joint representation tuning (JRT) to aggregate task-agnostic vision representation (supervised ImageNet pretrained models) and pathological specific feature represen
19#
發(fā)表于 2025-3-24 20:07:33 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔西| 南雄市| 临泉县| 五莲县| 大竹县| 鹿泉市| 墨玉县| 基隆市| 鹤庆县| 和龙市| 梧州市| 云林县| 巴南区| 南和县| 阳东县| 亚东县| 隆回县| 平利县| 萝北县| 达日县| 临沂市| 盖州市| 辛集市| 乃东县| 乌鲁木齐市| 开阳县| 德令哈市| 石棉县| 河西区| 绥棱县| 甘谷县| 介休市| 博客| 鞍山市| 茌平县| 迁西县| 图木舒克市| 衡山县| 鲁山县| 鄂州市| 青河县|