找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Singularities; A research textbook Herwig Hauser,Joseph Lipman,Adolfo Quirós Textbook 2000 Springer Basel AG 2000 Algebraisc

[復(fù)制鏈接]
樓主: 贊美
21#
發(fā)表于 2025-3-25 05:00:18 | 只看該作者
the simplest possible introduction to fundamentals of modem geometry: curvature, group actions, and covering spaces. 2. The prerequisites are modest and standard. A little linear algebra (mostly 2 x 2 matrices), calculus as far as hyperbolic functions, ba- sic group theory (subgroups and cosets), an
22#
發(fā)表于 2025-3-25 09:47:42 | 只看該作者
Herwig Hauseres" introduced here, which makes it possible to "see" the set of all possible voters‘ preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations
23#
發(fā)表于 2025-3-25 12:28:29 | 只看該作者
978-3-0348-9550-7Springer Basel AG 2000
24#
發(fā)表于 2025-3-25 17:04:54 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:09 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/828492.jpg
26#
發(fā)表于 2025-3-26 00:56:48 | 只看該作者
https://doi.org/10.1007/978-3-0348-8399-3Algebraische Topologie; Differentialgeometrie; Morphism; equation; geometry; linear optimization; moduli s
27#
發(fā)表于 2025-3-26 05:31:31 | 只看該作者
A Course on Constructive Desingularization and Equivariance... We focus on canonical properties of this desingularization such as compatibility with change of base field and that of equivariance, namely the lifting of any group action on . to an action on the desingularization defined by this procedure.
28#
發(fā)表于 2025-3-26 09:34:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:24:57 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:23 | 只看該作者
Excellent Surfaces and Their Taut Resolutiondded in three-space and defined over an algebraically closed field of arbitrary characteristic. The proof of strong embedded resolution we describe here combines arguments and techniques of O. Zariski, H. Hironaka, S. Abhyankar and the author.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄱阳县| 卓尼县| 青海省| 灵山县| 诸城市| 库伦旗| 上思县| 宁陵县| 柳林县| 荆州市| 顺平县| 泸州市| 河间市| 仁化县| 青龙| 应用必备| 蒲城县| 上饶市| 理塘县| 赤城县| 六盘水市| 安徽省| 盐亭县| 从江县| 互助| 汉寿县| 台江县| 边坝县| 额敏县| 孟连| 军事| 白沙| 左贡县| 会东县| 同仁县| 镇安县| 南宫市| 临西县| 阿克陶县| 石林| 江华|