找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Residue Number Systems; Algorithms and Archi P. V. Ananda Mohan Book 2002 Springer Science+Business Media New York 2002 VLSI.algorithm.algo

[復(fù)制鏈接]
樓主: Tyler
11#
發(fā)表于 2025-3-23 11:01:01 | 只看該作者
Introduction,i of the Ming dynasty (1368AD–1643AD). Later, Euler presented a proof for the Chinese Remainder Theorem (CRT) in 1734. In the twentieth Century, Lehmer, Svoboda and Valach built hardware using RNS and much work was done at various laboratories during 1950’s and 1960’s. The text books by Szabo and Ta
12#
發(fā)表于 2025-3-23 16:24:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:34:53 | 只看該作者
Forward and Reverse Converters for The Moduli Set {2k-1, 2k, 2k+1},forward and reverse conversion, scaling and other operations [Anan00b]. In this Chapter, VLSI architectures for forward and reverse conversion are discussed in detail. Related moduli sets {2.-1, 2., 2.-1}, {2n, 2n+1, 2n-1} and {2n, 2n+1, 2n+2} also will be considered.
14#
發(fā)表于 2025-3-23 22:19:24 | 只看該作者
Multipliers For RNS,hey have application in other areas such as Cryptography as well. The realization of multipliers could be using ROMs or could be without ROMs. Both these approaches will be studied in detail in this Chapter.
15#
發(fā)表于 2025-3-24 02:47:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:38:26 | 只看該作者
Error Detection and Correction in RNS,e some faults may occur which may be corrected by reconfiguring or bypassing the faulty device using additional residues corresponding to additional moduli. These additional moduli are termed as redundant moduli. The errors evidently can occur in the residues or redundant residues. These redundant r
17#
發(fā)表于 2025-3-24 12:59:22 | 只看該作者
Quadratic Residue Number Systems,n etc. However, under certain special cases of choice of moduli, the complete decoupling of computation of real and imaginary parts of the result is feasible. Nussbaumer [Nuss76] suggested that Fermat primes of the type 4k+l have this property. Later, this advantage has been extended to any primes o
18#
發(fā)表于 2025-3-24 18:37:50 | 只看該作者
19#
發(fā)表于 2025-3-24 19:08:38 | 只看該作者
Quadratic Residue Number Systems,RNS is the restriction on the type of moduli. Another technique which allows any modulus but with increase in number of multiplications has also been found known as Modified Quadratic Residue Number System (MQRNS) [Sode84b]. This will also be discussed in detail in this Chapter.
20#
發(fā)表于 2025-3-24 23:24:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南江县| 泰兴市| 广西| 江阴市| 白朗县| 娄烦县| 宿州市| 张家界市| 云南省| 大厂| 化隆| 威远县| 洛浦县| 鄂州市| 司法| 铜梁县| 徐州市| 鄄城县| 绥江县| 穆棱市| 枞阳县| 浮梁县| 佛学| 西昌市| 南投县| 蓬溪县| 中卫市| 平邑县| 孝昌县| 拜城县| 定襄县| 松滋市| 夹江县| 金溪县| 宜阳县| 马关县| 宜州市| 汕尾市| 九龙坡区| 龙陵县| 桃江县|