找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshetnyak‘s Theory of Subharmonic Metrics; Fran?ois Fillastre,Dmitriy Slutskiy Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: 可憐
21#
發(fā)表于 2025-3-25 07:08:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:06 | 只看該作者
On Isoperimetric Property of Two-dimensional Manifolds with Curvature Bounded from Above by , that for each open set .???. . We use the following notation: . . Let us suppose that for each compact .???., .(.)??0 such that for .?∈?. and .?
23#
發(fā)表于 2025-3-25 12:11:14 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:19 | 只看該作者
On the Potential Theoretic Aspect of Alexandrov Surface Theory,rs—amongst whom, most notably Wintner [.] and [.], Chern–Hartman–Wintner [.], and Reshetnyak [.] (Chap. .)—have sought to determine the weakest possible conditions under which the existence of such coordinate systems may be proven.
25#
發(fā)表于 2025-3-25 22:59:53 | 只看該作者
How I Got Involved in Research on Two-Dimensional Manifolds of Bounded Curvature,In the thirties of the last century, a new bright figure appeared on the horizon of Soviet mathematics: Aleksandr Danilovich Alexandrov. He was an actively working young mathematician, a man with outstanding talent and bright temperament. He is the author of research on the theory of convex bodies, continuing the work of H. Minkowski.
26#
發(fā)表于 2025-3-26 02:57:08 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature,The notion of two-dimensional manifolds of bounded curvature was introduced by A. D. Alexandrov in [.,.,.,.].
27#
發(fā)表于 2025-3-26 07:43:33 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature II, The present second part of the article is devoted to the proof of three basic lemmas stated in [.] (Chap. .). The definitions of the main notions and the terminology adopted in [.] (Chap. .) are supposed to be known in what follows.
28#
發(fā)表于 2025-3-26 08:49:25 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:09 | 只看該作者
Turn of Curves in Manifolds of Bounded Curvature with Isothermal Metric,A. D. Alexandrov [., .] introduced an important class of metric spaces—two-dimensional manifolds of bounded curvature. The theory of these spaces was developed in detail by A. D. Alexandrov in cooperation with V. A. Zalgaller. The main results of this theory are explained in the monograph [.].
30#
發(fā)表于 2025-3-26 20:13:03 | 只看該作者
Fran?ois Fillastre,Dmitriy SlutskiyThe articles of Yu. G. Reshetnyak about surfaces of bounded curvature accessible and translated.These articles are the only references for the complete proofs of Reshetnyak‘s theorem on the subject.It
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郑州市| 漾濞| 金平| 右玉县| 嘉兴市| 邢台县| 凤冈县| 怀宁县| 贵州省| 淳化县| 开封县| 阳朔县| 屏边| 囊谦县| 乐昌市| 泾川县| 乾安县| 谷城县| 保山市| 南皮县| 宁乡县| 汕尾市| 平凉市| 闻喜县| 镇江市| 新沂市| 夏邑县| 松滋市| 江永县| 达孜县| 丽江市| 仁寿县| 阿瓦提县| 买车| 安西县| 襄樊市| 海城市| 耿马| 云安县| 四平市| 长治县|