找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshetnyak‘s Theory of Subharmonic Metrics; Fran?ois Fillastre,Dmitriy Slutskiy Book 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: 可憐
21#
發(fā)表于 2025-3-25 07:08:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:06 | 只看該作者
On Isoperimetric Property of Two-dimensional Manifolds with Curvature Bounded from Above by , that for each open set .???. . We use the following notation: . . Let us suppose that for each compact .???., .(.)??0 such that for .?∈?. and .?
23#
發(fā)表于 2025-3-25 12:11:14 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:19 | 只看該作者
On the Potential Theoretic Aspect of Alexandrov Surface Theory,rs—amongst whom, most notably Wintner [.] and [.], Chern–Hartman–Wintner [.], and Reshetnyak [.] (Chap. .)—have sought to determine the weakest possible conditions under which the existence of such coordinate systems may be proven.
25#
發(fā)表于 2025-3-25 22:59:53 | 只看該作者
How I Got Involved in Research on Two-Dimensional Manifolds of Bounded Curvature,In the thirties of the last century, a new bright figure appeared on the horizon of Soviet mathematics: Aleksandr Danilovich Alexandrov. He was an actively working young mathematician, a man with outstanding talent and bright temperament. He is the author of research on the theory of convex bodies, continuing the work of H. Minkowski.
26#
發(fā)表于 2025-3-26 02:57:08 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature,The notion of two-dimensional manifolds of bounded curvature was introduced by A. D. Alexandrov in [.,.,.,.].
27#
發(fā)表于 2025-3-26 07:43:33 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature II, The present second part of the article is devoted to the proof of three basic lemmas stated in [.] (Chap. .). The definitions of the main notions and the terminology adopted in [.] (Chap. .) are supposed to be known in what follows.
28#
發(fā)表于 2025-3-26 08:49:25 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:09 | 只看該作者
Turn of Curves in Manifolds of Bounded Curvature with Isothermal Metric,A. D. Alexandrov [., .] introduced an important class of metric spaces—two-dimensional manifolds of bounded curvature. The theory of these spaces was developed in detail by A. D. Alexandrov in cooperation with V. A. Zalgaller. The main results of this theory are explained in the monograph [.].
30#
發(fā)表于 2025-3-26 20:13:03 | 只看該作者
Fran?ois Fillastre,Dmitriy SlutskiyThe articles of Yu. G. Reshetnyak about surfaces of bounded curvature accessible and translated.These articles are the only references for the complete proofs of Reshetnyak‘s theorem on the subject.It
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大庆市| 大荔县| 烟台市| 怀仁县| 岑巩县| 贵定县| 新昌县| 溧阳市| 龙南县| 常山县| 文昌市| 遵义市| 漳州市| 离岛区| 霸州市| 旅游| 云龙县| 易门县| 新沂市| 宜阳县| 互助| 江门市| 内丘县| 邵阳县| 城市| 阳西县| 巴彦县| 贡觉县| 屏东县| 黎川县| 德阳市| 阿鲁科尔沁旗| 吴江市| 鲁山县| 九江县| 澄江县| 平远县| 桂东县| 玛沁县| 柳河县| 莱阳市|