找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復(fù)制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Introduction to Part IWe begin with some background on convex polyhedra, setting the context for our results. The discussion in this section will be mostly informal and elementary, with formal definitions and statements deferred to later chapters.
22#
發(fā)表于 2025-3-25 10:16:45 | 只看該作者
Tailoring via SculptingIn this chapter we complete the proof that one slice of . by plane . can be tailored to the face of . lying in ., following the sequence.The previous chapter established the g-domes → pyramids reduction. Here we first prove the relatively straightforward slice → g-domes process and then concentrate on the more complex pyramid → tailoring step.
23#
發(fā)表于 2025-3-25 15:27:33 | 只看該作者
CrestsIn this chapter we revisit the suggestion made at the end of Chap. . that the digons to reduce one pyramid to its base could be cut out all at once, thus yielding an additional tailoring method.
24#
發(fā)表于 2025-3-25 18:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:34 | 只看該作者
Vertex-Merging Reductions and Slit GraphsIn this chapter we initiate the systematic study of repeated vertex-mergings, already used in Chap. .. We introduce vertex-merging reductions and their associated slit graphs and derive their basic properties for later use.
27#
發(fā)表于 2025-3-26 05:46:50 | 只看該作者
Planar Spiral Slit TreeThe previous chapter showed that if the slit graph . of a vm-reduction is a tree, then we can unfold . to the plane, and possibly to a non-overlapping net.
28#
發(fā)表于 2025-3-26 10:48:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄平县| 淄博市| 手游| 西林县| 清涧县| 监利县| 博白县| 股票| 和平县| 嵩明县| 新巴尔虎右旗| 公安县| 澄迈县| 巴林右旗| 阿尔山市| 潞西市| 怀远县| 迭部县| 从江县| 平利县| 慈利县| 徐水县| 逊克县| 芦山县| 景泰县| 凌源市| 抚松县| 冀州市| 张家口市| 长治县| 九寨沟县| 宜川县| 合江县| 岑巩县| 穆棱市| 沾化县| 铜山县| 来安县| 双鸭山市| 丹阳市| 安溪县|