找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Introduction to Part IWe begin with some background on convex polyhedra, setting the context for our results. The discussion in this section will be mostly informal and elementary, with formal definitions and statements deferred to later chapters.
22#
發(fā)表于 2025-3-25 10:16:45 | 只看該作者
Tailoring via SculptingIn this chapter we complete the proof that one slice of . by plane . can be tailored to the face of . lying in ., following the sequence.The previous chapter established the g-domes → pyramids reduction. Here we first prove the relatively straightforward slice → g-domes process and then concentrate on the more complex pyramid → tailoring step.
23#
發(fā)表于 2025-3-25 15:27:33 | 只看該作者
CrestsIn this chapter we revisit the suggestion made at the end of Chap. . that the digons to reduce one pyramid to its base could be cut out all at once, thus yielding an additional tailoring method.
24#
發(fā)表于 2025-3-25 18:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:34 | 只看該作者
Vertex-Merging Reductions and Slit GraphsIn this chapter we initiate the systematic study of repeated vertex-mergings, already used in Chap. .. We introduce vertex-merging reductions and their associated slit graphs and derive their basic properties for later use.
27#
發(fā)表于 2025-3-26 05:46:50 | 只看該作者
Planar Spiral Slit TreeThe previous chapter showed that if the slit graph . of a vm-reduction is a tree, then we can unfold . to the plane, and possibly to a non-overlapping net.
28#
發(fā)表于 2025-3-26 10:48:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰宁县| 江陵县| 张家口市| 林周县| 封丘县| 彭阳县| 化州市| 定安县| 韩城市| 花莲市| 平凉市| 宜宾县| 曲麻莱县| 十堰市| 商河县| 辽宁省| 庆阳市| 资溪县| 中超| 枣庄市| 塘沽区| 南阳市| 乌审旗| 肇庆市| 卢湾区| 南岸区| 洪泽县| 信阳市| 顺平县| 靖西县| 徐州市| 南靖县| 凌云县| 大港区| 巢湖市| 兴安县| 军事| 平泉县| 稷山县| 芜湖县| 周口市|