找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computer Science; 6th Conference, CRI Paulin Melatagia Yonta,Kamel Barkaoui,Omer-Blaise Conference proceedings 2024 The Edito

[復制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 15:26:17 | 只看該作者
,Time Aware Implicit Social Influence Estimation to?Enhance Recommender Systems Performances,icant role in our daily lives. However, with the constantly growing addition of items on these platforms, it becomes challenging for users to select the products that interest them. Hence, the implementation of recommender systems to facilitate this selection process. To enhance these recommender sy
42#
發(fā)表于 2025-3-28 21:38:27 | 只看該作者
,Analysis of?COVID-19 Coughs: From the?Mildest to?the?Most Severe Form, a?Realistic Classification Un over 600 million positive cases and over 6 million deaths worldwide. Therefore, an efficient, inexpensive, and ubiquitous diagnostic tool is essential to help fight lung disease and the COVID-19 crisis. Deep learning and machine learning algorithms can be used to analyze the cough sounds of infect
43#
發(fā)表于 2025-3-28 23:25:38 | 只看該作者
,SLCDeepETC: An On-Demand Analysis Ready Data Pipeline on?Sentinel-1 Single Look Complex for?Deep Legle Look Complex products from Sentinel-1 to predict some environmental phenomena using Deep Learning. By retaining all original sensor measurements, it has been proven that interferometry data on Single Look Complex products, when analyzed with Deep Learning, can better inform data restoration, coh
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:02 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:28:50 | 只看該作者
,Explaining Meta-learner’s Predictions: Case of?Corporate CO2 Emissions,fore necessary for companies to control and reduce their pollution levels, and this requires knowing the amount of CO. emissions that can be produced and identifying the factors responsible for it. Several works have been carried out with the aim of predicting the quantity of CO. emitted at the comp
48#
發(fā)表于 2025-3-29 20:42:26 | 只看該作者
49#
發(fā)表于 2025-3-30 02:32:01 | 只看該作者
,A Hybrid Algorithm Based on?Tabu Search and?K-Means for?Solving the?Traveling Salesman Problem,earch (TS). In this hybrid approach, we first apply the K-means algorithm to group cities into several clusters. Then we use tabu search to explore the solution space to optimise the path within each cluster. This avoids getting stuck in local optima and allows us to explore new, potentially better
50#
發(fā)表于 2025-3-30 04:38:02 | 只看該作者
,Hybridization of?a?Recurrent Neural Network by?Quadratic Programming for?Combinatory Optimization: ss, but they are still incomplete because they don’t take into account the changing trend of electricity demand in buildings. In this paper, we propose a novel approach to minimizing joule loss using a hybridization of a recurrent neural network (RNN) and quadratic programming (QP). The RNN is used
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
菏泽市| 师宗县| 财经| 老河口市| 铜鼓县| 汝阳县| 神农架林区| 深泽县| 迭部县| 左权县| 班玛县| 肥西县| 特克斯县| 饶阳县| 越西县| 宁德市| 大名县| 龙州县| 平顺县| 婺源县| 阿图什市| 乳山市| 乌拉特中旗| 大名县| 仪征市| 镇康县| 定兴县| 安庆市| 凤庆县| 泸水县| 汽车| 辉南县| 澄迈县| 泸水县| 策勒县| 静安区| 新津县| 博爱县| 静宁县| 长海县| 乐清市|