找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computational Topology 2; Ellen Gasparovic,Vanessa Robins,Katharine Turner Book 2022 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: VERSE
31#
發(fā)表于 2025-3-26 22:14:41 | 只看該作者
Book 2022ntaining the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations a
32#
發(fā)表于 2025-3-27 02:26:20 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:04 | 只看該作者
The Persistent Homology of Dual Digital Image Constructions, two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complex
34#
發(fā)表于 2025-3-27 12:20:38 | 只看該作者
Morse-Based Fibering of the Persistence Rank Invariant,dules are still lacking in the available topological data analysis toolboxes. Other issues, such as interpretation and visualization of the output, remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules.
35#
發(fā)表于 2025-3-27 17:42:00 | 只看該作者
36#
發(fā)表于 2025-3-27 17:47:46 | 只看該作者
Tile-Transitive Tilings of the Euclidean and Hyperbolic Planes by Ribbons,ariant equivalence. The hyperbolic case is relevant to self-assembly of branched polymers. Our result is achieved by combining and extending known methods for enumerating crystallographic disk-like tilings. We obtain a natural way of describing all possible stabiliser subgroups of tile-transitive ti
37#
發(fā)表于 2025-3-27 23:42:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:39:48 | 只看該作者
39#
發(fā)表于 2025-3-28 10:17:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
通江县| 宁夏| 东港市| 山东| 绍兴县| 益阳市| 清原| 娄底市| 黔江区| 寻乌县| 北京市| 儋州市| 六安市| 延长县| 九龙坡区| 北海市| 榆树市| 拉孜县| 合肥市| 商洛市| 垦利县| 三原县| 云和县| 靖安县| 绿春县| 昆山市| 安阳县| 紫阳县| 扎赉特旗| 芦溪县| 吴川市| 平安县| 兴城市| 封丘县| 平舆县| 龙陵县| 车险| 个旧市| 绥德县| 湄潭县| 特克斯县|