找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research Directions in Symplectic and Contact Geometry and Topology; Bahar Acu,Catherine Cannizzo,Lisa Traynor Book 2021 The Author(s) and

[復制鏈接]
樓主: fathom
11#
發(fā)表于 2025-3-23 10:34:58 | 只看該作者
12#
發(fā)表于 2025-3-23 14:48:44 | 只看該作者
Constructions of Lagrangian Cobordisms,rial building blocks as well as some geometric methods, involving the theory of satellites, to construct Lagrangian cobordisms. We will then survey some known results, derived through Heegaard Floer Homology and contact surgery, that may provide a pathway to proving the existence of nondecomposable (nonribbon) Lagrangian cobordisms.
13#
發(fā)表于 2025-3-23 18:44:07 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:18 | 只看該作者
https://doi.org/10.1007/978-3-030-80979-9pseudoholomorphic curves; differential topology; derived categories; triangulated categories; differenti
15#
發(fā)表于 2025-3-24 03:55:29 | 只看該作者
978-3-030-80981-2The Author(s) and the Association for Women in Mathematics 2021
16#
發(fā)表于 2025-3-24 06:36:59 | 只看該作者
Research Directions in Symplectic and Contact Geometry and Topology978-3-030-80979-9Series ISSN 2364-5733 Series E-ISSN 2364-5741
17#
發(fā)表于 2025-3-24 14:12:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:54:15 | 只看該作者
,A Polyfold Proof of Gromov’s Non-squeezing Theorem,work of Hofer-Wysocki-Zehnder to give proofs involving moduli spaces of pseudoholomorphic curves that are relatively short and broadly accessible, while also fully detailed and rigorous. We moreover review the polyfold description of Gromov-Witten moduli spaces in the relevant case of spheres with minimal energy and one marked point.
19#
發(fā)表于 2025-3-24 22:15:20 | 只看該作者
20#
發(fā)表于 2025-3-24 23:38:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汝南县| 阿拉善左旗| 荥经县| 邯郸市| 全椒县| 香港| 新安县| 靖宇县| 崇信县| 北碚区| 巴南区| 通榆县| 夹江县| 金溪县| 裕民县| 临海市| 米脂县| 图们市| 开远市| 东至县| 奎屯市| 安丘市| 华池县| 白山市| 驻马店市| 潮州市| 乐东| 江阴市| 兴宁市| 双江| 平定县| 永丰县| 曲松县| 三江| 通化市| 保康县| 黔西| 循化| 上高县| 乐平市| 龙山县|