找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representing Finite Groups; A Semisimple Introdu Ambar N. Sengupta Textbook 2012 Springer Science+Business Media, LLC 2012 group algebra.gr

[復(fù)制鏈接]
查看: 11432|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:35:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Representing Finite Groups
副標(biāo)題A Semisimple Introdu
編輯Ambar N. Sengupta
視頻videohttp://file.papertrans.cn/828/827515/827515.mp4
概述Presents basics of representation theory of finite groups from the point of view of semisimple algebras and modules over them.Progresses systematically with a gentle and inviting pace.Exercises at the
圖書封面Titlebook: Representing Finite Groups; A Semisimple Introdu Ambar N. Sengupta Textbook 2012 Springer Science+Business Media, LLC 2012 group algebra.gr
描述.This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups.?The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored?from multiple viewpoints. Exercises at the end of the chapter help reinforce the material..Representing Finite Groups: A Semisimple Introduction. would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful..A separate solutions manual is available for instructors..
出版日期Textbook 2012
關(guān)鍵詞group algebra; group theory; quantum physics; semisimple algebras
版次1
doihttps://doi.org/10.1007/978-1-4614-1231-1
isbn_softcover978-1-4899-9808-8
isbn_ebook978-1-4614-1231-1
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱Representing Finite Groups影響因子(影響力)




書目名稱Representing Finite Groups影響因子(影響力)學(xué)科排名




書目名稱Representing Finite Groups網(wǎng)絡(luò)公開度




書目名稱Representing Finite Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Representing Finite Groups被引頻次




書目名稱Representing Finite Groups被引頻次學(xué)科排名




書目名稱Representing Finite Groups年度引用




書目名稱Representing Finite Groups年度引用學(xué)科排名




書目名稱Representing Finite Groups讀者反饋




書目名稱Representing Finite Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:46 | 只看該作者
tematically with a gentle and inviting pace.Exercises at the.This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of gen
板凳
發(fā)表于 2025-3-22 01:41:32 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:36 | 只看該作者
5#
發(fā)表于 2025-3-22 12:12:53 | 只看該作者
978-1-4899-9808-8Springer Science+Business Media, LLC 2012
6#
發(fā)表于 2025-3-22 16:13:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:57:20 | 只看該作者
http://image.papertrans.cn/r/image/827515.jpg
8#
發(fā)表于 2025-3-22 23:39:10 | 只看該作者
https://doi.org/10.1007/978-1-4614-1231-1group algebra; group theory; quantum physics; semisimple algebras
9#
發(fā)表于 2025-3-23 02:24:04 | 只看該作者
10#
發(fā)表于 2025-3-23 06:05:15 | 只看該作者
Einleitung,Zust?nde genommen werden kann. Oftmals besteht das Interesse, solche Systeme nach bestimmten Kriterien zu optimieren. Zu diesem Zweck werden in der optimalen Steuerung für verschiedene Typen von Aufgaben die bestm?glichen Verl?ufe solcher Steuergr??en gesucht.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平山县| 会东县| 怀集县| 福海县| 湖北省| 中阳县| 德钦县| 墨脱县| 南靖县| 武安市| 唐河县| 尖扎县| 奈曼旗| 盐边县| 元朗区| 延寿县| 北海市| 和硕县| 汤阴县| 龙陵县| 凉城县| 长治市| 绥滨县| 东丰县| 齐河县| 鲁山县| 平度市| 凤凰县| 紫阳县| 新和县| 科技| 大同县| 怀宁县| 泰安市| 麟游县| 江孜县| 浪卡子县| 平武县| 万年县| 九江市| 嘉兴市|