找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations, Wavelets, and Frames; A Celebration of the Palle E. T. Jorgensen,Kathy D. Merrill,Judith A. P Book 2008 Birkh?user Boston

[復(fù)制鏈接]
樓主: Combat
11#
發(fā)表于 2025-3-23 13:20:23 | 只看該作者
Groups with Atomic Regular Representationf results related to the construction of [AR] groups and their properties are surveyed. The relevance of [AR] groups in the occurrence of nontrivial projections in .(.) and in higher-dimensional continuous wavelet transforms is presented.
12#
發(fā)表于 2025-3-23 15:15:45 | 只看該作者
13#
發(fā)表于 2025-3-23 19:49:11 | 只看該作者
The Density Theorem and the Homogeneous Approximation Property for Gabor Framesor system {.(. ? α.)}. must be incomplete in .(.) whenever . > 1, the necessary conditions for a Gabor system to be complete, a frame, a Riesz basis, or a Riesz sequence have been extended to arbitrary lattices and beyond. The first partial proofs of the Density Theorem for irregular Gabor frames we
14#
發(fā)表于 2025-3-24 01:13:41 | 只看該作者
15#
發(fā)表于 2025-3-24 05:46:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:37:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:15:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:20:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:08:15 | 只看該作者
A Survey of Projective Multiresolution Analyses and a Projective Multiresolution Analysis Corresponde give examples of projective multiresolution analyses corresponding to the nondiagonal 2 × 2 integer dilation matrix . that has determinant -2, and also to the nondiagonal 2 × 2 matrix . having determinant 2 related to the quincunx lattice. The method of construction follows that given by Rieffel a
20#
發(fā)表于 2025-3-25 02:09:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 新和县| 巩留县| 淮阳县| 临泽县| 大同县| 延川县| 阳谷县| 佛坪县| 南召县| 抚宁县| 广州市| 繁昌县| 鹤壁市| 张家川| 东乡县| 涿州市| 桂东县| 科技| 永泰县| 庆阳市| 漠河县| 连江县| 泉州市| 临邑县| 怀化市| 特克斯县| 尼木县| 长宁区| 方正县| 耒阳市| 九龙县| 长治市| 永年县| 谢通门县| 阿荣旗| 青阳县| 博爱县| 东明县| 长顺县| 台南市|