找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Finite Groups; C. Musili Book 1993 Hindustan Book Agency (India) 1993

[復(fù)制鏈接]
樓主: 斷巖
11#
發(fā)表于 2025-3-23 12:33:41 | 只看該作者
C. Musilimilar graphics subsystem and who can therefore make direct use of the experiences reflected in this collection. The book should also be a valuable supplement in university courses concerned with teaching the principles of implementing device-independent computer graphics.978-3-642-72932-4978-3-642-72930-0
12#
發(fā)表于 2025-3-23 16:17:40 | 只看該作者
hics subsystem and who can therefore make direct use of the experiences reflected in this collection. The book should also be a valuable supplement in university courses concerned with teaching the principles of implementing device-independent computer graphics.
13#
發(fā)表于 2025-3-23 19:10:28 | 只看該作者
14#
發(fā)表于 2025-3-24 00:09:19 | 只看該作者
15#
發(fā)表于 2025-3-24 05:35:47 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:43 | 只看該作者
18#
發(fā)表于 2025-3-24 15:56:05 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:55 | 只看該作者
Induced Representationsuct representations of a group . in terms of those of its subgroups .. Decomposing induced representations is . an easy problem, yet it is one of the most powerful methods for constructing irreducible representations of finite groups.
20#
發(fā)表于 2025-3-25 02:55:04 | 只看該作者
Representations of the Hyperoctahedral Group placing . by . and . by . to determine all (ordinary) irreducible representations of .. The considerations for the case of (., .) are similar to (., .) and so we need only to set the notation and state the results. (Cf. [37], [48], etc.)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖北省| 扎赉特旗| 青田县| 绥化市| 新平| 古蔺县| 泸州市| 嘉义县| 陕西省| 盐源县| 广水市| 阿合奇县| 榆林市| 章丘市| 鹤庆县| 鄂伦春自治旗| 五大连池市| 通州市| 宁强县| 米林县| 宾川县| 江陵县| 民权县| 苍南县| 商河县| 邢台县| 长治县| 阳高县| 收藏| 温宿县| 合川市| 北海市| 进贤县| 宾川县| 正镶白旗| 共和县| 兴山县| 科尔| 鄂州市| 高雄市| 大厂|