找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory, Mathematical Physics, and Integrable Systems; In Honor of Nicolai Anton Alekseev,Edward Frenkel,Milen Yakimov Book

[復(fù)制鏈接]
樓主: 大腦
31#
發(fā)表于 2025-3-26 22:25:29 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:47:55 | 只看該作者
,Quantum Periodicity and Kirillov–Reshetikhin Modules,We give a proof of the periodicity of quantum .-systems of type ..?×?.. with certain spiral boundary conditions. Our proof is based on the categorification of the .-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.
34#
發(fā)表于 2025-3-27 09:47:37 | 只看該作者
A Note on the E-Polynomials of a Stratification of the Hilbert Scheme of Points,The stratification associated with the number of generators of the ideals of the punctual Hilbert scheme of points on the affine plane has been studied since the 1970s. In this paper, we present an elegant formula for the E-polynomials of these strata.
35#
發(fā)表于 2025-3-27 15:27:57 | 只看該作者
,Irreducibility of the Wysiwyg Representations of Thompson’s Groups,We prove irreducibility and mutual inequivalence for certain unitary representations of R. Thompson’s groups F and T.
36#
發(fā)表于 2025-3-27 21:38:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:14 | 只看該作者
Tensor Product of the Fock Representation with Its Dual and the Deligne Category,We describe .-module structure of the tensor product of the Fock representation and its shifted dual using action of . on the abelian envelope of the Deligne’s category .(.).
38#
發(fā)表于 2025-3-28 06:06:58 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
https://doi.org/10.1007/978-3-030-78148-4Quantum Groups; Representation Theory; Categorifications; Kac-Moody Algebras; Invariants of knots and 3-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高要市| 寿阳县| 和平县| 石景山区| 绿春县| 沙田区| 云龙县| 武陟县| 哈巴河县| 湘阴县| 石嘴山市| 广德县| 文水县| 黄石市| 连山| 长泰县| 丰原市| 临安市| 攀枝花市| 柳河县| 赫章县| 博乐市| 汽车| 霍邱县| 麻城市| 双桥区| 措美县| 布尔津县| 吉木乃县| 陇川县| 措美县| 洞口县| 贺州市| 会宁县| 孟村| 德钦县| 中方县| 青州市| 繁昌县| 黔东| 遵义县|