找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Reductive Groups; Proceedings of the U P. C. Trombi Conference proceedings 1983 Birkh?user Boston, Inc. 1983 Group

[復(fù)制鏈接]
樓主: 驅(qū)逐
21#
發(fā)表于 2025-3-25 04:22:16 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:10 | 只看該作者
23#
發(fā)表于 2025-3-25 14:57:38 | 只看該作者
,Completeness of Poincaré Series for Automorphic Forms Associated to the Integrable Discrete Series,H.(D; .) by an integrable discrete series representation, where s is the complex dimension of the maximal compact subvariety K/V in D, then every Г-automorphic L. cohomology class ψ∈ H. (ГD; .), 1 ? p ? ∞, is represented by a Poincaré series
24#
發(fā)表于 2025-3-25 16:20:13 | 只看該作者
Conference proceedings 1983of the Department of Mathematics, University of Utah. Funding for the conference was provided by the National Science Foundation. The text includes a number of original papers together with expository articles on work already in print. It is hoped that the volume will be of use to both experts in th
25#
發(fā)表于 2025-3-25 22:01:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:44 | 只看該作者
A Classification of Unitary Highest Weight Modules,lgebra of G. A unitary representation (π,H) of G such that the underlying (?K) — module is an irreducible quotient of a Verma module for ?. is called a unitary highest weight module. Harish-Chandra ([4],[5]) has shown that G admits nontrivial unitary highest weight modules precisely when (G,K) is a
27#
發(fā)表于 2025-3-26 08:00:43 | 只看該作者
28#
發(fā)表于 2025-3-26 12:15:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:00 | 只看該作者
,All Supercuspidal Representations of SL? over a P-Adic Field are Induced,ions of the absolute Weil group W. of F should parameterize naturally the admissible, irreducible (nonspecial) representations of G, and that, in particular, the ., n-dimensional representations of W. should correspond under this parameterization to the irreducible supercuspidal representations of G
30#
發(fā)表于 2025-3-26 17:36:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武胜县| 晋宁县| 垫江县| 珠海市| 耿马| 景德镇市| 天气| 昭平县| 四川省| 乌审旗| 维西| 英吉沙县| 澄城县| 金寨县| 琼结县| 华池县| 武义县| 通州区| 邵东县| 澳门| 芒康县| 洞口县| 仪陇县| 星座| 辽阳县| 微山县| 甘肃省| 资阳市| 疏附县| 阜平县| 桑植县| 江达县| 县级市| 兰州市| 临澧县| 永新县| 高密市| 克东县| 建平县| 玛多县| 青神县|