找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Finite Monoids; Benjamin Steinberg Textbook 2016 Springer International Publishing Switzerland 2016 automata theo

[復(fù)制鏈接]
查看: 6939|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:32:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Representation Theory of Finite Monoids
編輯Benjamin Steinberg
視頻videohttp://file.papertrans.cn/828/827416/827416.mp4
概述An entire part of the text is devoted to applications to Markov chains, combinatorics, and automata theory.Accessible to a wide readership of graduate students and researchers, including non-experts i
叢書名稱Universitext
圖書封面Titlebook: Representation Theory of Finite Monoids;  Benjamin Steinberg Textbook 2016 Springer International Publishing Switzerland 2016 automata theo
描述.This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, ?and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. ?.Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modernflavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the m
出版日期Textbook 2016
關(guān)鍵詞automata theory; finite monoids; monoid applications Markov chains; monoid applications automata theory
版次1
doihttps://doi.org/10.1007/978-3-319-43932-7
isbn_softcover978-3-319-43930-3
isbn_ebook978-3-319-43932-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Representation Theory of Finite Monoids影響因子(影響力)




書目名稱Representation Theory of Finite Monoids影響因子(影響力)學(xué)科排名




書目名稱Representation Theory of Finite Monoids網(wǎng)絡(luò)公開度




書目名稱Representation Theory of Finite Monoids網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Representation Theory of Finite Monoids被引頻次




書目名稱Representation Theory of Finite Monoids被引頻次學(xué)科排名




書目名稱Representation Theory of Finite Monoids年度引用




書目名稱Representation Theory of Finite Monoids年度引用學(xué)科排名




書目名稱Representation Theory of Finite Monoids讀者反饋




書目名稱Representation Theory of Finite Monoids讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:09:25 | 只看該作者
13 Transformation Monoids role in automata theory and we provide here some applications in this direction. In particular, we study connections with the popular ?erny conjecture?[?64]; see?[Vol08] for a survey. This chapter is primarily based upon the paper?[Ste10b].
地板
發(fā)表于 2025-3-22 07:24:59 | 只看該作者
Universitexthttp://image.papertrans.cn/r/image/827416.jpg
5#
發(fā)表于 2025-3-22 10:03:19 | 只看該作者
6#
發(fā)表于 2025-3-22 14:25:28 | 只看該作者
Benjamin SteinbergAn entire part of the text is devoted to applications to Markov chains, combinatorics, and automata theory.Accessible to a wide readership of graduate students and researchers, including non-experts i
7#
發(fā)表于 2025-3-22 18:03:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:36 | 只看該作者
Representation Theory of Finite Monoids978-3-319-43932-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
9#
發(fā)表于 2025-3-23 02:48:38 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 土默特右旗| 陆川县| 紫阳县| 河西区| 射阳县| 通许县| 渭源县| 盘山县| 蚌埠市| 榆树市| 广南县| 普陀区| 九寨沟县| 佛坪县| 横峰县| 广平县| 蒙山县| 新营市| 全南县| 阿克苏市| 平乐县| 昭觉县| 工布江达县| 永修县| 伊春市| 株洲市| 淮南市| 赤城县| 德格县| 陈巴尔虎旗| 桂平市| 凉城县| 万荣县| 武乡县| 湟中县| 贺州市| 南靖县| 嘉兴市| 新绛县| 宁陵县|